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 6 

Abstract 7 

Energy storage is more important today than ever. It has a key role in storing intermittent electricity from 8 

renewable sources – wind, solar and waves – enabling the decarbonisation of the electricity sector. Liquid air 9 

energy storage (LAES) is a novel technology for grid scale energy storage in the form of liquid air with the 10 

potential to overcome the drawbacks of pumped-hydro and compressed air storage. In this paper we address the 11 

performance of next generation LAES standalone plants. Starting our experience with LAES pilot plant at 12 

Birmingham (UK), we developed for the first time a validated model to address the dynamic performance of 13 

LAES. The model allows us to understand the relationship between component and system level performance 14 

through dynamic modelling. We found that the temporary storage of cold thermal energy streams using packed 15 

beds improves efficiency of LAES by ~50%. However, due to dynamic cycling charge/discharge, packed beds can 16 

bring an undesired 25% increase in the energy expenditure needed to liquefy air. In summary, this work points 17 

outs that a) dynamics of LAES should not be neglected; b) novel design for cold thermal storage are needed and 18 

c) linking component and system level performance is crucial for energy storage.  19 

Nomenclature  

D Inner diameter of packed bed reservoir (m) 

Dout Outed diameter of packed bed reservoir (m) 

G Mass flow rate per unit surface (kg m-2 s-1) 

H Height [m] 

T Temperature (K) 

U Overall heat transfer coefficient (W m-2 K-1) 

UV
 Overall volumetric heat transfer coefficient (W m-3 K-1) 

V Volume (m3) 

𝑉̇ Volume flow rate (m3 s-1) 

𝑊̇ Power (W) 

Y Liquid yield (-) 

cp  Specific heat capacity (J kg-1 K-1) 

d Pebble average diameter (m) 

h
  

Specific enthalpy (J kg-1) 

hfs
  

Convective heat transfer coefficient (W m-2 K-1) 

hfs,V
  

Convective heat transfer coefficient (W m-2 K-1) 

jH Colburn factor (-) 

m  Mass flow rate (kg s-1) 

n Number of stages (-) 

p Pressure (Pa) 

q Specific heat transfer (J kg-1) 

qCR
 Specific cold recycle (J kg-1) 

s Specific entropy (J kg-1 K-1) 

tc Plant charge time (s) 

td Plant discharge time (s) 

ux Actual velocity (m s-1) 

vx
 Void shell crossing velocity (m s-1) 

w Specific work (J kg-1) 
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x Coordinate [m] 

Re Reynolds number (-) 

Pr Prandtl number (-) 

  

Greek letters  

α Heat transfer surface per unit volume (m-1) 

δ Thickness [m] 

ε Heat exchanger effectiveness (-) 

ηp Cryogenic pump efficiency (-) 

ηs
 

Isoentropic component efficiency (-) 

ηRT Round trip efficiency (-) 

ηo Overall system efficiency (-) 

ρ  Density (kg m-3) 

σ Void fraction (-) 

gen  Entropy generation rate [J kg-1 K-1] 

τc Dimensionless charging time [-] 

τd Dimensionless dicharging time [-] 

Δ Thickness (m) 

λ Thermal conductivity (W m-1 K-1) 

Φ Heat flux (W) 

ΦCR 
Cold recycle (W) 

Π Compression or expansion ratio (-) 

ζ Relative pressure drop (-) 

μ Viscosity (Pa s) 

 20 

1 Introduction 21 

World-wide renewable energy sources contribute for just 6% [1] of the electricity production while fossil fuel still 22 

dominate with a share near 70%. Our society urgently needs to shift toward a more sustainable energy scenario: 23 

CO2 emissions must decrease by 90% by 2050 to limit global warming below 2°C which already severely impacts 24 

on our society. To achieve this ambitious target electricity section needs a full decarbonisation. An intense 25 

penetration of renewable energy sources – currently accounting for just 6% of electricity production – will be 26 

necessary to meet CO2 reduction targets. In fact, according to IEA scenarios [1], renewable resources could reach 27 

a global share of 65% by 2050. However, such a dramatic increased penetration of intrinsically fluctuating 28 

renewables sources – wind and solar in particular – poses major threats to the overall energy system such as 29 

imbalance between supply and demand, reduced capacity margin, congestion of networks and in ultimate analysis 30 

the need of a more flexible energy system [2]. Among the possible solutions, Energy storage (ES) has great 31 

potentials to implement the required flexibility and support a stable energy system [3]. By providing multiple 32 

services [3,4] ES enables to capture “wrong time” energy and make it available when required, mitigating the 33 

variability of renewables and improving the reliability of the electricity generation asset.  34 

Main storage technologies divide in distributed storage – small in nature and suitable for individual users’ 35 

applications – and bulk storage located in the transmission to provide large scale storage capacity and services 36 

according to grid needs. Although  distributed storage has seen major developments in recent years [4, 5], bulk 37 

energy storage – with 100s of MW power output and storage capacity of hundreds of 100MWh – still relies on 38 

pumped hydroelectricity storage (PHS) and compressed air energy storage (CAES) [4, 6]. Both technologies 39 

presents severe drawbacks and have limited future development: PHS is geographically constrained, heavily 40 

impacts on the environment and shows high capital costs. CAES is limited by the availability of natural 41 

underground reservoirs, relatively inefficient compared to electrochemical batteries and it might needs tailored 42 

turbomachinery for adiabatic configurations. In recent years an alternative solution for grid-scale storage – namely 43 



liquid air energy storage (LAES) – has drawn the attention of both academic and industry [7-10]. Liquid air energy 44 

storage comprises three distinct processes summarized in the schematic of Fig 1: during charging excess electricity 45 

– e.g. from wind energy – drives an air liquefaction process based on a Claude cycle. Air from the environment is 46 

compressed in stages and then expanded to ambient pressure and sub-ambient temperature to generate the 47 

necessary refrigeration effect to liquefy air. Liquid air is then stored in cryogenic tanks at nearly ambient pressure. 48 

During discharge pressurized liquid air is regassified and expanded through turbomachines to generate electricity 49 

and recover stored energy. Both heat of compression and cold thermal energy from regasification can be stored 50 

and recycled to improve the efficiency of the overall system. Thanks to its unique features LAES overcomes the 51 

drawbacks of PHS and CAES: it is not geographically constrained, uses commercially available components – 52 

thus reduced upfront costs – and it integrates well with traditional power plants [9, 11].  However, LAES needs 53 

further research to increase overall efficiency, store cold and hot thermal energy efficiently and increase response 54 

time.  55 

 56 

Figure 1: Liquid air energy storage – the concept. 57 

The use of liquid air was firstly proposed at University of Newcastle [12] and tested by Mitsubishi Industries Ltd 58 

around 1998 [13] as an extended alternative CAES. In both these studies storage of compressed air was replaced 59 

by storage of liquid air but discharge processes still relied on combustor/gas turbine assembly that used regassified 60 

air to feed the combustion process. Hence still a pollutant process. In early 2000s researchers at University of 61 

Leeds together with Highview Power Storage went on to develop the technology and proposed the key features of 62 

LAES [14]. Contrary to Mitsubishi configuration, the system proposed by Highview does not involve any 63 

combustion process and uses air as the only working fluid, thus avoiding any pollutant emissions. The design 64 

proposed in [14] uses thermal energy storage to recycle cold thermal energy (Fig 1). During discharge cold thermal 65 

energy available from liquid air evaporation is stored and subsequently used to reduce refrigeration load to liquefy 66 

air during charging process. Such a design change in LAES crucially improves [8] the efficiency of the system, 67 

make it pollution free and opens up multiple opportunities for integration of LAES with other energy processes. 68 

Progressively, different LAES improvements have been presented [15-17] and a 350kW/2.5MWh pilot plant – 69 

now located at the University of Birmingham – was built to demonstrate the feasibility of the proposed design [8]. 70 

Cold thermal store was realized using modular packed beds with quartzite rocks [9] and operated at nearly ambient 71 

pressure to reduce material costs and diminish plant complexity. The data gathered from the LAES pilot plant 72 



shown that when cold thermal energy is recycled the round trip efficiency of the plant increases of about 50% 73 

compared with the case without cold recycle [8]. 74 

Although the cold thermal energy storage plays a cornerstone role in LAES, its role and impact on future 75 

commercial scale LAES plants remain largely unaddressed. In particular, studies available in the literature do not 76 

address a) the dynamic performance LAES with cold packed bed thermal storage b) how the cold packed bed 77 

thermal storage impact on the operation and performance of the other components of a LAES plant c) the efficiency 78 

of stand-alone LAES plant except for the steady-state study presented by Guizzi et al. [10] Such a component-to-79 

plant link is crucial: energy storage systems in future grids with high penetration of renewables will likely operate 80 

under variable conditions providing a spectrum of multiple services such as balancing, arbitrage and peak shaving. 81 

Thus, steady state analysis under design conditions significantly risk to not capture the realistic operation of energy 82 

storage systems. In this work we fill the above mentioned gap in the literature. We present a study of a 83 

100MW/300MWh stand-alone LAES plant with cold packed beds for cold recycle and sensible TES to store heat 84 

of compression. The mathematical model we developed includes both algebraic and differential modules that 85 

details the transient behaviour of packed bed thermal stores. This allows to link the performance of the thermal 86 

storage system with those of the whole LAES plant. To the authors’ knowledge the present study is the first of this 87 

kind for a LAES plant.  88 

2 Stand-alone liquid air energy storage plant - System description 89 

Figure 2 presents the liquid air energy storage (LAES) plant studied in this work. It comprises three distinct sub-90 
systems: the liquefaction unit, the storage unit and the power recovery unit (PRU). During the liquefaction process 91 
air is brought to liquid state through a modified Claude process which encompass compression of air and its 92 
subsequent expansion to produce the necessary refrigeration effect to liquefy air. Compression is carried out in 93 
two intercooled stages (stream 2 to 5 in Fig 2) where heat is stored in sensible form by a diathermic oil that acts 94 
both as heat transfer fluid and storage medium (hot storage tanks in Fig 2). The high pressure air stream is then 95 
cooled in a multi stream heat exchanger (cold box, stream 3 to 6) by the counter flowing cold (14 to 15) stream of 96 
air from the gas/liquid separator and a cold air stream (3C to 4C) from the High grade cold thermal storage (HGCS). 97 
Finally, air expands through the cryogenic expander producing a mixture of gaseous and liquid air which are split 98 
in the separator, with liquid air collected and stored in a cryogenic tank at about 80K and near ambient pressure. 99 
Along the cold box two streams of air – 10 and 12 in Fig 2 – are spilled and expanded in two warm turbo expanders. 100 
Extraction at optimal pressure and temperature improves the efficiency of the cooling process (details in Sect. 4.2) 101 
by improving the matching of streams temperature profiles in the cold box and thus reducing the power 102 
requirement for the liquefaction process. During discharging of LAES plant high pressure and high temperature 103 
air expands through a turbine train to generate electricity (stream 15 to 25). At first cryogenic pumps pressurize 104 
liquid air withdrawn from cryogenic tank (17 to 18) then liquid air is regassified and reheated in different steps: at 105 
the evaporator the cold thermal energy released by liquid air gasification (stream 17 to 18) is captured by counter 106 
flowing heat transfer fluid (stream 1C to 2C) and stored into the HGCS. Previous studies and experimental 107 
campaign on the of the LAES pilot plant [8] demonstrated that the high grade cold thermal storage can be 108 
effectively realized using packed beds with rocks as filler. In such a case the stream 1C-2C consists of gaseous air 109 
at nearly ambient pressure which exchange cold thermal energy in the evaporator and stores it in the medium of 110 
the packed bed – typically quartzite rocks. Packed beds thermal stores show good thermal efficiency – above 85% 111 
[25] – low costs and high safety standards thus are ideal candidates for LAES. Furthermore, HGCS operates at 112 
nearly ambient pressure which contributes to reduce balance-of-plant costs (thinner walls for the walls of the 113 
HGCS vessel).  114 



 115 

Figure 2: Stand-alone Liquid Air Energy Storage (LAES) plant. 116 

 117 

Table 1. Major parameters of standalone LAES system 118 

Quantity Value 

Ambient temperature 288.15 K 

Ambient pressure 1.01 bar 

Rated power output 100 MW 

Energy capacity 300 MWh 

Nominal discharge time 3 hours 

Compression train rated power 70 MW 

Liquid air storage tank 3000 ton 

HGCS volume 9200 m3 

Hot thermal oil reservoirs volume 4000 m3 

Compressors isentropic efficiecy 85% 

Turbines isentropic efficiency 85% 

Cryoturbines isentropic efficiency 70% 

Cryopums efficiency 75% 

Cold box pinch point temperature difference 5°C 

 119 

Under nominal conditions the LAES plant provides a power output of 100MW and a storage capacity of 300MWh 120 
similarly to other bulk storage technologies [6] – pumped hydroelectricity storage and compressed air energy 121 



storage. Figure 3 shows the duty cycle of LAES plant superimposes to the daily electricity demand profile for a 122 
large city for 2030 energy scenario. The daily demand profile was obtained from scenarios reported by National 123 
Grid [18] by scaling down the UK demand profile to large city scale on the basis of city population (1M). LAES 124 
operates in charging mode overnight during a low demand period of 9h while energy is supplied by LAES over a 125 
3h period of peak electricity demand helping in matching demand and supply.  126 

Table 1 lists the major design and operational parameters for the charging, storage and discharging units of the 127 
LAES plant under design conditions. The charging and discharging pressure – respectively p5 and p17 in Fig. 2 – 128 
were selected to maximize the efficiency of the LAES plant, as illustrated in detail in Section 4.1. Given the rated 129 
power of the LAES plant axial compressors and turbines were considered; isentropic efficiency of 85% was 130 
selected and a nominal inlet temperature of about 350°C resulted from the storage of the heat of compression 131 
(storage tanks). The oil in the hot thermal store tank is at 375°C (5H in Fig 2) since it recovers the heat of from 132 
the compression train. The complete set of thermodynamic states – enumerated according to Fig 2 – is reported in 133 
Tables 2, 3 and 4. The state points and thermodynamic properties were modelled with EES (Engineering Equation 134 
Solver) coupled with Matlab® using input parameter reported in Table 1; details about the mathematical model 135 
developed in this work are reported in Section 3.  136 

 137 

Figure 3: Forecasted city daily electricity demand for 2030 superimposed with liquid air energy storage plant 138 
duty cycle. 139 

 140 

Table 2: Thermodynamic states for the air loop 141 

Point 
Mass 
flow 

Pressure Temperature 
Specific 

enthalpy 
Specific 
Entropy 

Quality* 

  [kg/s] [bar] [K] [kJ/kg] [kJ/kgK] [-] 

1 92.33 1.09 286.1 286.3 6.798 - 



2 92.33 14.20 642.1 651.9 6.887 - 

3 92.33 14.06 298.8 296.1 6.099 - 

4 92.33 183.20 673.4 688.9 6.19 - 

5 92.33 181.30 299.7 267.7 5.273 - 

6 83.10 179.50 96.5 -81.2 3.255 - 

7 83.10 1.10 80.0 -97.0 3.339 0.1356 

8 11.27 1.10 82.4 79.3 5.523 1 

9 71.83 1.10 79.6 -124.7 2.976 0 

10 9.23 179.50 220.0 155.9 4.84 - 

11 9.23 10.00 110.0 92.5 5.093 - 

12 9.23 9.90 130.0 118.6 5.314 - 

13 9.23 1.10 82.4 79.3 5.523 1 

14 20.50 1.10 82.4 79.3 5.523 1 

15 20.50 1.09 278.7 278.9 6.772 - 

16 211.80 1.10 79.6 -124.7 2.996 0 

17 211.80 75.00 82.9 -113.4 3.031 - 

18 211.80 74.25 268.5 249.0 5.46 - 

19 211.80 73.51 437.7 434.2 6 - 

20 211.80 72.77 613.9 622.0 6.363 - 

21 211.80 19.75 454.7 455.6 6.43 - 

22 211.80 19.56 619.6 628.0 6.756 - 

23 211.80 5.31 459.7 461.8 6.822 - 

24 211.80 5.26 621.1 629.7 7.138 - 

25 211.80 1.43 461.1 463.5 7.204 - 

26 211.80 1.41 277.9 278.0 6.694 - 

*when not reported Quality is equal to one. 142 

Table 3: Thermodynamic states for the cold recycle loop 143 

Point 
Mass 
flow 

Pressure Temperature 
Specific 

enthalpy 
Specific 
Entropy 

Quality 

  [kg/s] [bar] [K] [kJ/kg] [kJ/kgK] [-] 

1C 406.60 1.50 278.2 278.2 6.677 - 

2C 406.60 1.49 92.7 89.4 5.557 - 

3C 135.60 1.50 93.0 89.8 5.557 - 

4C 135.60 1.49 278.7 278.8 6.682 - 

 144 

Table 4: Thermodynamic states for the oil loop 145 

Point 
Mass 
flow 

Pressure Temperature 

  [kg/s] [bar] [K] 

1H 90.81 1.10 288.2 

2H 47.32 1.09 661.8 

3H 43.50 1.09 631.4 



4H 90.81 1.09 647.3 

5H 274.00 1.10 646.0 

6H 91.33 1.09 469.1 

7H 91.33 1.09 464.3 

8H 91.33 1.09 448.1 

9H 274.00 1.09 460.5 

 146 

3 Mathematical modelling of LAES plant and validation 147 

A hybrid modelling approach was used, enabling to describe in detail the behavior of key components, while 148 
saving computational resources on other parts of the system. Traditional thermodynamic modelling of charge and 149 
discharge processes was carried out using EES software [19]. Mass, momentum and energy conservation equations 150 
for each component have been specified. Routines for thermodynamic properties were already implemented in 151 
EES. A more detailed 1-D, transient model for the packed bed cold storage has been developed using COMSOL 152 
[20]. The cold box was also treated in depth, accounting for both the effect of various fluid streams and pinch 153 
points internal to the heat exchanger. Finally, under MATLAB environment, the different parts of the model were 154 
loaded and run when needed. Model predictive capability was validated against experimental measurements from 155 
the LAES 350 kW pilot plant, located at University of Birmingham. Specific reference to parts of the model is 156 
given in the following sections. 157 

3.1 Process components 158 

We adopted a steady state model for compressors, turbines, pumps and heat exchangers; for each component we 159 
accounted for mass conservation, energy conservation and entropy balance:  160 

 

i

im 0  (1) 161 

  
i

iinoutit hhmW   (2) 162 

  j

gen i out in i
j ij

m s s
T




     (3) 163 

Isentropic efficiencies 𝜂𝑖,𝑠 have been specified for turbomachinery in order to compute real work and 164 

compression/expansion rations have been selected as follows: 165 

n
MAX

p

p












min

 (4) 166 

where n is the number of stages and MAXp , minp  refer to the maximum and minimum pressure of the whole train. 167 

The work input required by cryogenic pumps has been computed as: 168 

P
P

pV
W







  (5) 169 

where 𝑉̇ is the volumetric flow rate crossing the component and Δ𝑝 the pressure rise liquid air is subject to. 170 



Two streams heat exchangers were characterized by the effectiveness 𝜀𝑖, defined as the ratio between the heat 171 
actually transferred between streams and its maximum value: 172 

   

 
   

  MAXp

cinoutcp

MAXp

houtinhp

i
Tcm

TTcm

Tcm

TTcm











minmin







  (6) 173 

Here, the subscript min refers to the fluid with minimum heat capacity rate and Δ𝑇𝑀𝐴𝑋 is the difference between 174 
inlet temperatures of hot and cold stream in the component. Finally, pressure drops in the components were 175 
calculated as function of the incoming pressure [10]: 176 

  iniiouti pp ,, 1   (7) 177 

Hot oil loop comprises two storages,  where high temperature oil is stored for boosting discharge. While modelling, 178 
the hot tank was regarded as adiabatic. Oil mass conservation across both the reservoirs was imposed. As an 179 
example, for the hot tank, over a complete charge/discharge cycle it yields: 180 

 
dc t

out

t

in dtmdtm
00
  (8) 181 

No thermal stratification has been considered in the hot tank, since the inlet oil temperature variation over time 182 
was not significant. The temperature at which oil was available at the power recovery unit was thus determined 183 
as: 184 

dttT
t

T
ct

inoil

c

oil 
0

,)(
1

 (9) 185 

Hot oil thermodynamic properties used were density ρoil = 750 kg/m3 and specific heat cp,oil = 2200 J/kgK [21] 186 

Some performance parameters for the LAES plant were also defined. Roundtrip efficiency was computed as the 187 

ratio between the specific work produced dw and the specific work cw  absorbed by the plant during charging:  188 

c

d
RT

w

w
  (10) 189 

Cold recycle CR  and specific cold recycle CRq  have been defined as: 190 

 outCBinCBCBCRlCR hhmqm ,,    (11) 191 

Where inCBh ,  and outCBh ,  refer to the specific enthalpy of air from HGCS, entering and leaving the cold box, and 192 

lm  is the mass flow rate of liquid generated by the cryogenic cycle. Liquid yield of liquefaction plant is simply 193 

given by the ratio between this latter value and the total mass flow rate going through the compression train: 194 

tot

l

m

m
Y




  (12) 195 

Dimensionless charge and discharge times were defined, together with a dimensionless axial length for the packed 196 
bed: 197 



H

x

t

t

t

t

d

d

c

c    (13) 198 

where t is the time, tc is the nominal discharge time, td is the nominal discharge time and H is the height of the 199 
packed bed. 200 

3.2 Cold box 201 

The cold box is a multi-stream heat exchanger which represents the core of the liquefaction system. The presence 202 
of several fluid streams, together with the supercritical conditions of incoming air, makes it possible for a pinch 203 
point condition to occur at an inner section of the component [22]. To account for this phenomenon, while also 204 
taking properly into account the effect of inlet temperature from cold recycle, a specific model was implemented. 205 
The approach used is summarized in Figure 4. The heat exchanger was discretized into multiple sections, imposing 206 
a fixed temperature drop to the cold stream of about 1°C for each. Given the mass flow rates of both hot and cold 207 
streams, together with their temperature at the warm end, the outlet temperature from each section was obtained 208 
solving a set of energy balance equations: 209 

 1,,,,  ihihihphh TTcm  210 

     
j

icicijpjicicicpcc TTcmTTcm 1,,,,1,,,,
  (14) 211 

hc   212 

On the RHS of Eq. 8 an extra is added to the balance to model the effect of the additional j-th cold stream; we used 213 
this approach to account for the cold recycle stream coming from the HGCS and other cold streams. Such modeling 214 
approach leads to accurate results for cold box analyses as reported in [23]. 215 

 216 

Figure 4. Schematic of modelling approach for the cold box. 217 

3.2 Packed bed cold thermal storage (HGCS) 218 

For the high grade cold thermal storage (HGCS) we adopted a one-dimensional approach to model heat transfer 219 
within the packed bed. Energy equations for both solid bed and air were used under the assumption of uniform 220 
flow distribution [24,25]: 221 
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Where subscript f and s stands for fluid and solid. Void fraction σ of the bed was evaluated as function of the ratio 224 
particle diameter dp to packed bed diameter D [25]: 225 

2

0.375 0.17 0.39
p pd d

D D


 
    

 
  (17)226 

  227 

Equations 15 and 16 are coupled through the volumetric heat transfer coefficient hfs,V which was evaluated using 228 
Colburn factor for gas flow in a bed of spheres [26]: 229 

3/2

,
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H
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h
j   230 

575.0Re06.2  dHj  (18) 231 

f
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


Re  232 

where ℎ𝑓𝑠 is the heat exchange coefficient per unit surface, 𝐺𝑓 is the specific flow rate, referred to the void cross 233 

sectional area and 𝑃𝑟 is the Prantl number. 𝑑 is the pebble diameter, 𝜇𝑓 fluid viscosity and 𝑣𝑥 air velocity. The 234 

convective interchange term ℎ𝑓𝑠,𝑉 per unit solid volume can be easily computed, recalling the exchange surface 235 

per unit volume: 236 
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Pressure drop in the systems was computed according to Ergun’s correlation [27]: 238 
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Given the high amount of cold energy to be stored in the standalone LAES, a modular layout was used. The storing 240 
volume was segmented in 6 identical cells, each one crossed by one sixth of the total air mas flow rate, according 241 
to a parallel layout (Fig 5). Benefits of modularity are linked with system scalability, effective operation at reduced 242 
duties and less structural issues [9,28]. In addition, in a LAES system the mass flow rates crossing the the cold 243 
storage during plant charge and discharge can differ significantly [28]. A proper pipe arrangement can be used to 244 
optimize storage aspect ratio to the mass flow rate, switching from parallel to series connection and vice versa. 245 
Just parallel connection between modules was considered in the present case. The transient model (Eqs. 15 and 246 
16) was developed for one single cell; model input parameters are presented in Table 5. 247 

Table 5. Major parameters used for the packed bed model (single cell) 248 

Quantity Value 

D 12 m 

d 15 mm 

H 13.65 m 

σ 0.38 

𝜌𝑠 2560 kg/m3 

𝑐𝑝,𝑠 541 J/kgK 

𝜆𝑠 8.99 W/mK 

𝜆𝑖𝑛𝑠 0.05 W/mK 

δ 15 cm 



 249 

The air loop mass flow rate during plant discharge was determined in order to result in a similar temperature 250 
difference between cold and hot stream at both ends of the evaporator, once given heat exchanger effectiveness. 251 

 252 

Figure 5. Schematic of modular packed bed high grade cold storage. 253 

Thermo-physical of air were evaluated through EES as function of temperature and pressure. For the solid bed, it 254 
was observed that thermal properties at cryogenic temperatures differ significantly from the ones at ambient 255 
conditions. For this reason, we experimentally measured specific heat and thermal conductivity of quartzite-based 256 
river shingle by differential scanning calorimetry (DSC) and laser flash analysis (LFA). Differential scanning 257 
calorimetry was performed using Mettler-Toledo DSC2+ with a furnace cooled by means of external chiller which 258 
limited the minimum temperature to -80°C. 10mg sample of rocks were tested in aluminum pans from 20°C to -259 
80°C at a cooling rate of 5°C/min with samples held at constant -80°C/20°C for 5 min. All the tests were performed 260 
under N2 flow of 20ml/min. The measured specific heat of rocks is presented in Fig 6 left; at cryogenic temperature 261 
the specific heat drops by ~20% compared to room temperature highlighting the fact that proper sizing of cold 262 
packed bed needs accurate properties measurements at sub-ambient temperature. Although the DSC measurements 263 
could not reach temperature of liquid air, they provided useful data that lay in the middle of the expected operating 264 
range for the storage. 265 

Thermal conductivity was measured using Netzsch LFA 427 laser flash apparatus cooled by liquid nitrogen; each 266 
test was conducted with a laser intensity of 480V and laser pulse of 80ms; Cowan method was user to obtain 267 
thermal diffusivity from LFA output signal. The thermal conductivity of rocks increases at cryogenic temperatures 268 
as shown in Fig 6 right.  269 



 270 
Figure 6. Measured specific heat (left) and thermal conductivity of quartzite-based river shingle (right). 271 

3.3 Model validation  272 

We validated the whole LAES plant model against the experimental data from the first LAES pilot plant originally 273 
developed by Highview Powerstorage [11] and currently located at the University of Birmigham, UK (Fig 7). We 274 
operated the plant over the period November 2015 – June 2016 and recorded experimental data for the 275 
thermodynamic states enumerated in Figs 8 and 9, which details the layout of the plant. Moreover, temperature 276 
profile along the high grade cold storage were monitored as well and used to validate the packed bed model 277 
presented in Section 3.2. Table 6 shows a nearly perfect match between experimental data and numerical 278 
predictions which confirm the reliability of the modeling approach we proposed in Sect. 3. Moreover, the 279 
difference between predicted values of enthalpy (presented in Fig. 6) and the values of enthalpy obtained using 280 
experimental values for pressure and temperature is within 1.5%, which further confirm the accuracy of the 281 
mathematical model. Furthermore, it can be noticed that the pilot plant cryogenic tank operates at 10 bar. Small 282 
cryo-tanks (about 50m3 for the pilot plant) are commonly slightly pressurized, however large tanks (e.g. LNG 283 
terminals) expected to be used in the LAES plant proposed in Fig. 2 operates near ambient pressure.  284 

The high grade cold storage in the LAES pilot plant is modular packed bed comprising 4 U-shaped cells filled 285 
with quartzite rocks as in detail in [28]. Temperature along each cell were recorded during the LAES discharging 286 
process and compared with the results from the numerical model of Sect. 3. Figure 10 shows predicted vs. 287 
measured temperatures for three different axial locations of the storage. Overall the predictive capability of the 288 
model is satisfactorily given the uncertainty on the actual location of thermocouples and some parameters, such as 289 
the void fraction. 290 



 291 

Figure 7. 350kW/2.5MWh Liquid air energy storage pilot plant at the University of Birmingham, UK. 292 

 293 

 294 

Figure 8. Process flow diagram of the LAES pilot plant – charging process 295 

 296 



 297 

Figure 9. Process flow diagram of the LAES pilot plant – discharging process 298 

 299 

Table 6: Thermodynamic states LAES pilot plant; experimental values (grey) vs predicted (white)  300 

Point p [bar] T [°C] m [kg/s] h [kJ/kg] X [-] 

1  10  -169.4  1.84 -64.5 1 

2 45.1 46.45 -162.2 -162.5 1.8 1.84 -48.3 - 

3  45.1 -91.2 -92.9 1.8 1.84 158.5 - 

4  43.7 -16.4 -17.8 1.8 1.84 252 - 

5 42.4 43.7 46.3 44.5 1.8 1.84 321.8 - 

6  19.5 7.3 9.1 1.8 1.84 288.1 - 

7 19 19.5 55 54.9 1.8 1.84 337.2 - 

8  10.8 26.6 23.4 1.8 1.84 305.4 - 

9 10.6 10.8 45.1 42.8 1.8 1.84 325.9 - 

10  4.2 -1.6 -2 1.8 1.84 280.3 - 

11 4.1 4.2 44.2 44.5 1.8 1.84 328.9 - 

12 1.5 1.5 -2.5 2.7 1.8 1.84 285.9 - 

13  1.5 45.2 45.1 1.8 1.84 330.1 - 

14  1.5  -44.6 1.8 1.84 236.6 - 

15  1.5  37 1.8 1.84 321.6 - 

16  1.5 -159.7 -160.3 1.8 1.84 114.8 - 

 301 



 302 

Figure 10. Packed bed model validation; predicted vs measured temperature time evolutions. Data refer to 303 
positions at 0.27, 1.7 and 3.13 m along packed bed axis. 304 

 305 

4 Results and discussion 306 

This section details the results obtained through the mathematical model presented in Section 3. Firstly, we 307 
illustrate and discuss the optimal operation conditions of the plant for steady state operation which lead to the 308 
thermodynamic states of Tables 1-3 reported in Section 2. Secondly, we presents the results for dynamic operation 309 
of LAES plant and emphasize the link between component performance and plant performance. To this aim, 30 310 
consecutive duty cycles (Fig. 3) were simulated with the full dynamic model.  311 

4.1 Optimal charging and discharging operation conditions  312 

Two major operating parameters affect the performance of LAES plant: a) the charging pressure Pcharge, namely 313 
the compressor outlet pressure during liquefaction process (p5 in Fig. 2) and b) the discharging pressure Pdisch, i.e. 314 
the turbine inlet pressure during the energy recovery processes (p17 in Fig. 2).  A variation in either Pcharge  or Pdisch 315 
brings opposite effects; the amount of liquefied air increases as Pcharge increase but at the expenses of higher 316 
compression work. Similarly, the power output from the LAES plant augments if Pdisch is raised but pumping work 317 
from cryogenic pumps increases as well. Clearly, room for optimal selection of pressures exists as Figs. 11 and 12 318 
show. A charging pressure of ~185 bar maximize the round tip efficiency of the LAES plant to about 50% – values 319 
consistent with former analysis available in the literature [10]. Above 185 bar the benefits on liquid production are 320 
not sufficient to counterbalance the higher expense in compression work as clearly summarized in Fig 12. Above 321 
185 bar liquid yield minimally increases while specific compression work strongly augments. A minimum 322 
discrepancy between location of maximum liquid yield and minimum compression work can be observed in Fig 323 
12; we attribute this to the model non-linearity (more than 30 coupled non-linear equations) which makes it 324 
sensitive to small variations in the input parameter and in the convergence criteria. However, the region of optimal 325 
charging pressure is clearly identified and the validation study previously reported make us highly confident about 326 
the results obtained.  327 



 328 

Figure 11. Standalone LAES round trip efficiency for different charging pressures.  329 

 330 

Figure 12. Figures of merits for the liquefaction process as function of charging pressure.  331 

The composite curves for the cold box heat exchanger add further details about the effect of optimal charging 332 
pressure. Figure 13 presents three composite curves for three different values of charging pressure across the 333 
optimal value of 185 bar. The optimal condition coincides with the best match between temperature profiles of hot 334 
stream (5 to 6 Fig 2) and cold streams (14 to 15; 3C to 4C). An optimal charging pressure brings the best possible 335 
composite curve in the cold box, thus minimizing the heat transfer irreversibility in the cold box (14, 6 and 3C in 336 
Fig. 2). At optimal conditions pinch point locates as close as possible to the cold end of the cold box; different 337 
location of pinch point – due to not optimal charging pressure – limits the liquid yield. In particular, pinch point 338 
can occur inside the cold box due to variation in specific heat of air at supercritical conditions leading to limitation 339 
in heat transfer performance.  340 



 341 

Figure 13: Composite curves in the cold box for different charging pressures. 342 

Beside optimal charging pressure, the amount of air spilled from the cold box and expanded in the cryo-turbines 343 
affects the matching of temperature profiles in the cold box as well. Figure 14 illustrates how the spilled mass 344 
percentage – i.e. the ratio of cryo-turbine mass flow rate to total air flow rate – can be selected to maximize the 345 
liquid yield Y. The optimal spilled mass depends on the value of cold thermal energy recycled through the cold 346 
packed bed (stream 3C-4C). Interestingly, a limiting curve exists to which actual curves tend to for high spilled 347 
mass percentage. The limiting curve represents the limit that the actual curves will tend to when, for each value of 348 
cold recycle, the pinch point exactly occurs at the outlet of the cold box heat exchanger. In fact the limiting curve 349 
– continuous line in Fig. 14 – was obtained for pinch point exactly at the cold end of the cold box.   350 

 351 

Figure 14: Liquid yield for different spilled fractions; parametrized for different amounts of cold recycled. 352 

As presented in Fig. 15 the round trip efficiency of LAES plant monotonically increases with an increase in the 353 
discharge pressure; namely an higher turbine pressure inlet results in a higher specific expansion work. However, 354 
increasing Pdisch lowers the amount of cold could be recycled. This is due to the increase of enthalpy of air at the 355 
outlet of the cryopumps caused by the pumping work (Eq. 5). Consequently, the boost in the round trip efficiency 356 
becomes marginal after a certain threshold value of Pdisch: the higher the pressure, the lower the relative benefit 357 



achieved, for the same pressure increment, as also pointed out in previous studies [8, 10]. For this reason a 358 
discharge pressure of 75 bar was chosen in this work as design value. Overall, from a comparison of Figs. 11 and 359 
15 the impact of charging and discharging pressures on LAES plant performance is comparable although the 360 
compression work (70MW) is significantly higher than the pumping work (2MW). 361 

 362 

Figure 15: Standalone LAES round trip efficiency for different dicharging pressures. 363 

4.2 Impact of cold recycle on LAES performance  364 

The amount of cold recycled by means of the high grade cold storage (HGCS) is critical to achieve maximum 365 
performance from the LAES plant. As shown in Fig 16, both round trip efficiency and liquid yield dramatically 366 
benefits from an increase in cold recycle: a 16% increase in cold recycle leads to 20% increase in the round trip 367 
efficiency and a 30% increase in the liquid yield. This stems from the key role played by cold recycle into the 368 
overall LAES plant; the cold thermal energy available from gasification of liquid air during discharge is injected 369 
back into liquefaction process (charging) thanks to the HGCS. The latter – as any thermal storage device – allows 370 
to time shift supply and demand of cold into the LAES plant. Without the HGCS, cold thermal energy from 371 
discharge would be otherwise wasted, since the charging and discharging processes do not match in time as shown 372 
in Fig. 3.  The cold recycled – from LAES discharge prospective – represents and extra source of cold available at 373 
the cold box (stream 3C-4C in Fig. 2); thus, as show in Fig 16, it increases the liquid yield at the same power 374 
requirement for air compression. In summary, Fig 16 shows how carefully cold recycle – and its implementation 375 
through the HGCS – should be addressed during the design and operation of a liquid air energy storage plant. 376 



 377 

Figure 16: round trip efficiency (left) and liquid yield (right) for different amount of cold recycle. 378 

 379 

4.3 LAES dynamic performance – effect of packed bed cold thermal storage on system performance 380 

Over the 30 duty cycles of the LAES plant the high grade cold storage (HGCS) is charged and discharged 381 
repetitively. During air liquefaction the HGCS feeds cold thermal energy to the cold box (loop 3C-4C in Fig. 2) 382 
improving the performance of the liquefaction process. On the other hand, the HGCS stores the cold thermal 383 
energy released by evaporation of liquid air (stream 17 to 18 in Fig. 2) when LAES plant generates electrical power 384 
output. Before illustrating the results relative to the HGCS a clarification of the terminology here used is necessary: 385 
when LAES plant is charged – i.e. air liquefaction occurs – the HGCS discharges, namely cold thermal energy is 386 
retrieved from the packed bed. On the other hand, as the LAES plant discharges – that is the plant generates 387 
electricity – the HGCS charges by recovering cold thermal energy from evaporation of liquid air. To be consistent 388 
with terminology adopted in the previous sections, in the following we will keep using the term charging to 389 
identify the time span when liquefaction occurs, regardless if referring to the LAES plant or the packed bed cold 390 
thermal storage. Similarly, the term discharging will be used for both LAES plant and HGCS when referring to 391 
the time interval when electric power is generated. 392 



 393 

Figure 17: Packed bed temperature profile after LAES discharging (left) and LAES charging (right) for different 394 
cycles. 395 

Figure 17 shows the storage temperature profile along the HGCS at the end of discharge and charge, for various 396 
cycles. At the end of the first discharge cycle a temperature profile with strong gradient in the range Γ = 0.4-0.6; 397 
this kind of temperature distribution is commonly called thermocline because the presence of a strong gradient 398 
temperature stratification) which clearly separates the cold extremity of the packed bed from the hot one.  399 
However, the temperature stratification rapidly degenerates over the cycles due to axial conduction along the bed 400 
and due to periodic charging-discharging of the storage [25]. After 15-20 cycles the evolution of the temperature 401 
profile becomes stationary, i.e. the same two profiles establish after charging and discharging. Because of the 402 
presence of the thermocline – i.e. a temperature gradient along the packed bed – the outlet temperature from the 403 
HGCS during charging (Γ = 0 in Fig. 17 right) increases over time, as shown in Fig 18. Specifically, the outlet 404 
temperature varies when the thermocline approaches the outlet section of the packed bed – due flow air flow rate 405 
through the packed bed (in Fig 2 stream 1C-2C during discharge and 3C-4C during charge). Crucially, during 406 
discharge the outlet temperature from the HGCS coincides with the cold box inlet temperature (3C in Fig. 2). From 407 
Fig 18 it appears that for about 80% of the charging process the system operates under nominal conditions. After 408 
that, as the thermocline profile inside the HGCS approaches the outlet, warmer air enters the cold box affecting 409 
the liquefaction process and causing a degradation of performance. The effect is far from being negligible; as 410 
shown in Fig 19 left, the specific liquefaction work increases by ~25% compared with nominal operating 411 
conditions (τc = 1) at the end of discharging because of temperature increase at the cold box inlet. The effect is 412 
even more relevant before the 15-20th cycle since steady temperature profiles were not established yet in the HGCS. 413 

At the component level, the behaviour of the cold box is directly affected by the inlet temperature from the HGCS. 414 
The composite curves – presented in Fig 20 – show that the total heat transfer rates decreases toward the end of 415 
charge (τc = 1) because the air stream coming from the HGCS warms up. In addition, a higher inlet temperature in 416 
the cold box results in a lower outlet temperatures from it, due to the constraint posed by the pinch point; this 417 
explains the small drop of the temperature profile at the top of packed bed after discharge (0.8 < Γ < 1 Fig 17 418 
right).  419 

The packed bed cold thermal storage marginally affects the discharging process – i.e. the power recovery from 420 
LAES. During discharge the thermocline exits from the top of the HGCS (Γ = 1 in Fig 17 right); thus the outlet 421 
temperature is nearly constant (Fig 18 right) because the temperature profile in the HGCS is nearly flat for 0.4 < 422 



Γ < 1 in Fig 17 right. Critically, during discharge the packed bed outlet temperature (Γ = 1 in Fig 17 right) coincides 423 
with the warm inlet temperature of the evaporator (stream 1C in Fig 2) which therefore always operates nearly 424 
design conditions. In fact, the variation of the evaporator warm inlet temperature stays within 10°C as shown in 425 
Fig 18 right. This is beneficial for the LAES discharge since the expansion train constantly operates at nominal 426 
conditions and therefore the specific expansion work does not vary, as illustrated in Fig 19. As a results of the 427 
variation in liquefaction/expansion specific work the round trip efficiency changes from cycle to cycle as 428 
illustrated in Fig 21. After about 20 cycles the efficiency stabilizes around 48% because steady state temperature 429 
profiles establish in the packed bed. Finally, Table 7 summarizes the impact of the cold packed bed thermal stores 430 
impact on the operation and performance of LAES plant. 431 

 432 

Figure 18: time variation of cold box and evaporator inlet temperature; these two inlet temperatures coincide 433 
with packed bed outlet temperature during charge and discharge respectively. 434 

 435 

Figure 19: time variation of specific work for air liquefaction and specific work generated by LAES plant; 436 
variation in work needed liquefaction are caused by time variation of cold box inlet temperature. 437 



 438 

Figure 20. Composite curves in the cold box for τc = 0 (left) and τc = 1 (right) at cycle 30. 439 

 440 

Figure 21. Overall round trip efficiency over the number of cycles. 441 

Table 7: Effect of packed bed cold thermal storage dynamics on LAES plant performance 442 

    τd.τd=0 τd.τd =1 Δ 

wc  [kJ/kgl] 977.6 1118.7 14.4 

wd  [kJ/kgl] 472.2 472.0 0.0 

η [%] 48.3 42.2 -12.6 

Φ [MW] 25.69 21.70 -15.5 

Φspecific [kJ/kg] 358.8 346.8 -3.4 

Y [%] 77.54 67.02 -13.6 

 443 



5 Conclusions 444 

This work presented for the first time a dynamic study of a liquid air energy storage (LAES) plant with rated power 445 
of 100MW and storage capacity of 300MWh. We considered a stand-alone plant configuration comprising packed 446 
bed thermal energy storage to recycle cold energy from regasification of liquid air and diathermic hot thermal store 447 
to capture heat of compression. This was possible by developing an algebraic-differential model detailing the 448 
behaviour all the components of LAES plant and in particular the transient feature of packed bed thermal energy 449 
storage. The model was validated against experimental results measured from the first LAES plant in the world 450 
currently installed at the University of Birmingham. We carried out detailed simulations for consecutive 451 
charging/discharging cycles and determined the relationship between component and plant level performance; the 452 
following key results were obtained at different levels: 453 

Plant level 454 

 The LAES plants achieve a round trip efficiency of 50% under nominal conditions -  i.e. a sufficient level 455 
of performance for future energy storage technology according to predictions of Strbac et al [29]. 456 

 The recycle of cold from discharging to charging processes reduces the energy required to liquefy air by 457 
~25% – thus efficient cold by recycle by cold thermal storage is the cornerstone subsystem of LAES 458 

 Optimal charge and discharge pressure should be selected to maximize LAES performance  459 

Cold thermal storage level 460 

 Packed bed cold thermal storage with rocks represents a viable solution to implement cold recycle in 461 
LAES plants but it introduces dynamic effects due to thermal front propagation in the packed bed.  462 

 At the end of the discharging process air outlet temperature from the cold thermal store increases by 25% 463 
compared with nominal conditions due to degradation of the thermal front in the packed bed; 464 
consequently the amount of cold recycled decreased by the same amount.  465 

 The efficiency of liquefaction process detriments toward the end of each LAES charging cycle due to 466 
degradation of the thermal front in the cold packed bed. The degradation of the thermal front manifests 467 
as an increase of the air outlet temperature from the cold packed bed reducing the amount of cold recycles  468 

 469 
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