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This paper has a somewhat unusual origin and, as a consequence, an unusual structure. It is
built on the principle embraced by families who outgrow their dwellings and decide to add a few
rooms to their existing structures instead of starting from scratch. These additions usually “show,”
but the whole can still be quite pleasing to the eye, combining the old and the new in a functional
way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today

(1991). The old text (with some modifications) is interwoven with the new text, but the additions
are set off in boxes throughout this article and serve as a commentary on new developments as
they relate to the original. The references appear together at the end.

In 1991, the study of decoherence was still a rather new subject, but already at that time, I
had developed a feeling that most implications about the system’s “immersion” in the environment
had been discovered in the preceding 10 years, so a review was in order. While writing it, I had,
however, come to suspect that the small gaps in the landscape of the border territory between the
quantum and the classical were actually not that small after all and that they presented excellent
opportunities for further advances.

Indeed, I am surprised and gratified by how much the field has evolved over the last decade.
The role of decoherence was recognized by a wide spectrum of practicing physicists as well as,
beyond physics proper, by material scientists and philosophers. The study of the predictability
sieve, investigations of the interface between chaotic dynamics and decoherence, and most recently,
the tantalizing glimpses of the information-theoretic nature of the quantum have elucidated our
understanding of theubert Universe.

Not all of the new developments are reported in this review: Some of the most recent (and,
conceivably, most far-reaching) are still too ”fresh”, and, hence, too difficult to describe succinctly.
The role of redundancy of the imprint left by the preferred observables of the system on the states of
the environment in the emergence of the objective classical properties from the quantum substrate,
or the concept of the environment - assisted invariance (or envariance) that allows one to give a
fully quantum justification of Born’s rule connecting amplitudes with probabilities are beyond the
scope of this minireview.

Finally, I have some advice to the reader. I believe this paper should be read twice: first, just
the old text alone; then—and only then—on the second reading, the whole thing. I would also
recommend to the curious reader two other overviews: the draft of my Reviews of Modern Physics

paper (Zurek 2001a) and Les Houches Lectures coauthored with Juan Pablo Paz (Paz and Zurek
2001).

Introduction

Quantum mechanics works exceedingly well in all practical applications. No example of conflict
between its predictions and experiment is known. Without quantum physics, we could not explain
the behavior of the solids, the structure and function of DNA, the color of the stars, the action of
lasers, or the properties of superfluids. Yet nearly a century after its inception, the debate about
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the relation of quantum physics to the familiar physical world continues. Why is a theory that
seems to account with precision for everything we can measure still deemed lacking?

The only “failure” of quantum theory is its inability to provide a natural framework for our
prejudices about the workings of the Universe. States of quantum systems evolve according to the
deterministic, linear Schrödinger equation

ih̄
d

dt
|ψ〉 = H |ψ〉 . (1)

That is, just as in classical mechanics, given the initial state of the system and its Hamiltonian H ,
one can, at least in principle, compute the state at an arbitrary time. This deterministic evolution
of |ψ〉 has been verified in carefully controlled experiments. Moreover, there is no indication of a
border between quantum and classical at which Equation (1) would fail (see cartoon on the opener
to this article).

There is, however, a very poorly controlled experiment with results so tangible and immediate
that it has enormous power to convince: Our perceptions are often difficult to reconcile with the
predictions of Equation (1). Why? Given almost any initial condition, the Universe described
by |ψ〉 evolves into a state containing many alternatives that are never seen to coexist in our
world. Moreover, while the ultimate evidence for the choice of one alternative resides in our elusive
“consciousness,” there is every indication that the choice occurs much before consciousness ever
gets involved and that, once made, it is irrevocable. Thus, at the root of our unease with quantum
theory is the clash between the principle of superposition—the basic tenet of the theory reflected
in the linearity of Equation (1)—and everyday classical reality in which this principle appears to
be violated.

The problem of measurement has a long and fascinating history. The first widely accepted
explanation of how a single outcome emerges from the multitude of potentialities was the Copen-
hagen Interpretation proposed by Niels Bohr (1928), who insisted that a classical apparatus is
necessary to carry out measurements. Thus, quantum theory was not to be universal. The key
feature of the Copenhagen Interpretation is the dividing line between quantum and classical. Bohr
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emphasized that the border must be mobile so that even the “ultimate apparatus”—the human
nervous system—could in principle be measured and analyzed as a quantum object, provided that
a suitable classical device could be found to carry out the task.

In the absence of a crisp criterion to distinguish between quantum and classical, an identifi-
cation of the classical with the macroscopic has often been tentatively accepted. The inadequacy
of this approach has become apparent as a result of relatively recent developments: A cryogenic
version of the Weber bar—a gravity-wave detector— must be treated as a quantum harmonic os-
cillator even though it may weigh a ton (Braginsky et al. 1980, Caves et al. 1980). Nonclassical
squeezed states can describe oscillations of suitably prepared electromagnetic fields with macro-
scopic numbers of photons (Teich and Saleh 1990). Finally, quantum states associated with the
currents of superconducting Josephson junctions involve macroscopic numbers of electrons, but
still they can tunnel between the minima of the effective potential corresponding to the opposite
sense of rotation (Leggett et al. 1987, Caldeira and Leggett 1983a, Tesche 1986).

If macroscopic systems cannot be always safely placed on the classical side of the boundary,
then might there be no boundary at all? The Many Worlds Interpretation (or more accurately, the
Many Universes Interpretation), developed by Hugh Everett III with encouragement from John
Archibald Wheeler in the 1950s, claims to do away with the boundary (Everett 1957, Wheeler
1957). In this interpretation, the entire universe is described by quantum theory. Superpositions
evolve forever according to the Schrödinger equation. Each time a suitable interaction takes place
between any two quantum systems, the wave function of the universe splits, developing ever more
“branches.”

Initially, Everett’s work went almost unnoticed. It was taken out of mothballs over a decade
later by Bryce DeWitt (1970) and DeWitt and Neill Graham (1973), who managed to upgrade
its status from “virtually unknown” to “very controversial.” The Many Worlds Interpretation is
a natural choice for quantum cosmology, which describes the whole Universe by means of a state
vector. There is nothing more macroscopic than the Universe. It can have no a priori classical
subsystems. There can be no observer “on the outside.” In this universal setting, classicality must
be an emergent property of the selected observables or systems.

At first glance, the Many Worlds and Copenhagen Interpretations have little in common. The
Copenhagen Interpretation demands an a priori “classical domain” with a border that enforces a
classical “embargo” by letting through just one potential outcome. The Many Worlds Interpretation
aims to abolish the need for the border altogether. Every potential outcome is accommodated by
the ever-proliferating branches of the wave function of the Universe. The similarity between the
difficulties faced by these two viewpoints becomes apparent, nevertheless, when we ask the obvious
question, “Why do I, the observer, perceive only one of the outcomes?” Quantum theory, with its
freedom to rotate bases in Hilbert space, does not even clearly define which states of the Universe
correspond to the “branches.” Yet, our perception of a reality with alternatives—not a coherent
superposition of alternatives—demands an explanation of when, where, and how it is decided what
the observer actually records. Considered in this context, the Many Worlds Interpretation in its
original version does not really abolish the border but pushes it all the way to the boundary
between the physical Universe and consciousness. Needless to say, this is a very uncomfortable
place to do physics.

In spite of the profound nature of the difficulties, recent years have seen a growing con-
sensus that progress is being made in dealing with the measurement problem, which is the usual
euphemism for the collection of interpretational conundrums described above. The key (and uncon-
troversial) fact has been known almost since the inception of quantum theory, but its significance
for the transition from quantum to classical is being recognized only now: Macroscopic systems
are never isolated from their environments. Therefore—as H. Dieter Zeh emphasized (1970)—they
should not be expected to follow Schrödinger’s equation, which is applicable only to a closed sys-
tem. As a result, systems usually regarded as classical suffer (or benefit) from the natural loss
of quantum coherence, which “leaks out” into the environment (Zurek 1981, 1982). The resulting
decoherence cannot be ignored when one addresses the problem of the reduction of the quantum
mechanical wavepacket: Decoherence imposes, in effect, the required “embargo” on the potential
outcomes by allowing the observer to maintain only records of the alternatives sanctioned by de-
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coherence and to be aware of only one of the branches—one of the “decoherent histories” in the
nomenclature of Murray Gell-Mann and James Hartle (1990) and Hartle (1991).

The aim of this paper is to explain the physics and thinking behind decoherence and
environment-induced superselection . The reader should be warned that this writer is not a dis-
interested witness to this development (Wigner 1983, Joos and Zeh 1985, Haake and Walls 1986,
Milburn and Holmes 1986, Albrecht 1991, Hu et al. 1992), but rather, one of the proponents. I
shall, nevertheless, attempt to paint a fairly honest picture and point out the difficulties as well as
the accomplishments.

Decoherence in Quantum Information Processing

Much of what was written in the introduction remains valid today. One important development
is the increase in experimental evidence for the validity of the quantum principle of superposition
in various contexts including spectacular double-slit experiments that demonstrate interference of
fullerenes (Arndt et al. 1999), the study of superpositions in Josephson junctions (Mooij et al.1999,
Friedman et al. 2000), and the implementation of Schrödinger “kittens” in atom interferometry
(Chapman et al. 1995, Pfau et al. 1994), ion traps (Monroe et al. 1996) and microwave cavities
(Brune et al. 1996). In addition to confirming the superposition principle and other exotic aspects
of quantum theory (such as entanglement) in novel settings, some of these experiments allow—as
we shall see later—for a controlled investigation of decoherence.

The other important change that influenced the perception of the quantum-to-classical “bor-
der territory” is the explosion of interest in quantum information and computation. Although
quantum computers were already being discussed in the 1980s, the nature of the interest has
changed since Peter Shor invented his factoring algorithm. Impressive theoretical advances, includ-
ing the discovery of quantum error correction and resilient quantum computation, quickly followed,
accompanied by increasingly bold experimental forays. The superposition principle, once the cause
of trouble for the interpretation of quantum theory, has become the central article of faith in the
emerging science of quantum information processing. This last development is discussed elsewhere
in this volume, so I shall not dwell on it here.

The application of quantum physics to information processing has also transformed the nature
of interest in the process of decoherence: At the time of my original review (1991), decoherence
was a solution to the interpretation problem—a mechanism to impose an effective classicality
on de facto quantum systems. In quantum information processing, decoherence plays two roles.
Above all, it is a threat to the quantumness of quantum information. It invalidates the quantum
superposition principle and thus turns quantum computers into (at best) classical computers,
negating the potential power offered by the quantumness of the algorithms. But decoherence is also
a necessary (although, until recently, tacitly taken for granted) ingredient in quantum information
processing, which must, after all, end in a “measurement.”

The role of a measurement is to convert quantum states and quantum correlations (with their
characteristic indefiniteness and malleability) into classical, definite outcomes. Decoherence leads
to the environment-induced superselection (einselection) that justifies the existence of the preferred
pointer states. It enables one to draw an effective border between the quantum and the classical in
straightforward terms, which do not appeal to the “collapse of the wavepacket” or any other such
deus ex machina.

Correlations and Measurements

A convenient starting point for the discussion of the measurement problem and, more generally, of
the emergence of classical behavior from quantum dynamics is the analysis of quantum measure-
ments due to John von Neumann (1932). In contrast to Bohr, who assumed at the outset that the
apparatus must be classical (thereby forfeiting claim of quantum theory to universal validity), von
Neumann analyzed the case of a quantum apparatus. I shall reproduce his analysis for the simplest
case: a measurement on a two-state system S (which can be thought of as an atom with spin 1/2)
in which a quantum two-state (one bit) detector records the result.
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Figure 1: A Reversible Stern-Gerlach Apparatus. The “gedanken” reversible Stern-Gerlach appa-
ratus in (a) splits a beam of atoms into two branches that are correlated with the component of the
spin of the atoms (b) and then recombines the branches before the atoms leave the device. Eugene
Wigner (1963) used this gedanken experiment to show that a correlation between the spin and the
location of an atom can be reversibly undone. The introduction of a one-bit (two-state) quantum
detector that changes its state when the atom passes nearby prevents the reversal: The detector
inherits the correlation between the spin and the trajectory, so the Stern-Gerlach apparatus can
no longer undo the correlation. (This illustration was adapted with permission from Zurek 1981.)

The Hilbert space HS of the system is spanned by the orthonormal states | ↑〉 and | ↓〉,
while the states |d↑〉 and |d↓〉 span the HD of the detector. A two-dimensional HD is the absolute
minimum needed to record the possible outcomes. One can devise a quantum detector (see Figure
1) that “clicks” only when the spin is in the state | ↑〉, that is,

| ↑〉|d↓〉 → | ↑〉|d↑〉 , (2)

and remains unperturbed otherwise.
I shall assume that, before the interaction, the system was in a pure state ψS given by

|ψS〉 = α| ↑〉 + β| ↓〉 , (3)

with the complex coefficients satisfying |α|2 + |β|2 = 1. The composite system starts as

|Φi〉 = |ψS〉|d↓〉 , (4)

Interaction results in the evolution of |Φi〉 into a correlated state |Φc〉:

|Φi〉 = (α| ↑〉 + β| ↓〉) ⇒ α| ↑〉|d↑〉 + β| ↓〉|d↓〉 = |Φc〉 . (5)

This essential and uncontroversial first stage of the measurement process can be accomplished by
means of a Schrödinger equation with an appropriate interaction. It might be tempting to halt the
discussion of measurements with Equation (5). After all, the correlated state vector |Φc〉 implies
that, if the detector is seen in the state |d↑〉, the system is guaranteed to be found in the state | ↑〉.
Why ask for anything more?

The reason for dissatisfaction with |Φc〉 as a description of a completed measurement is simple
and fundamental: In the real world, even when we do not know the outcome of a measurement,
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we do know the possible alternatives, and we can safely act as if only one of those alternatives
has occurred. As we shall see in the next section, such an assumption is not only unsafe but also
simply wrong for a system described by |Φc〉.

How then can an observer (who has not yet consulted the detector) express his ignorance
about the outcome without giving up his certainty about the “menu” of the possibilities? Quantum
theory provides the right formal tool for the occasion: A density matrix can be used to describe
the probability distribution over the alternative outcomes.

Von Neumann was well aware of these difficulties. Indeed, he postulated (1932) that, in
addition to the unitary evolution given by Equation (1), there should be an ad hoc “process 1”—a
nonunitary reduction of the state vector—that would take the pure, correlated state |Φc〉 into an
appropriate mixture: This process makes the outcomes independent of one another by taking the
pure-state density matrix:

ρc = |Φc〉〈Φc| = |α|2| ↑〉〈↑ ||d↑〉〈d↑| + αβ∗| ↑〉〈↓ ||d↑〉〈d↓|
+α∗β| ↓〉〈↑ ||d↓〉〈d↑| + |β|2| ↓〉〈↓ ||d↓〉〈d↓| , (6)

and canceling the off-diagonal terms that express purely quantum correlations (entanglement) so
that the reduced density matrix with only classical correlations emerges:

ρr = |α|2| ↑〉〈↑ ||d↑〉〈d↑| + |β|2| ↓〉〈↓ ||d↓〉〈d↓| . (7)

Why is the reduced ρr easier to interpret as a description of a completed measurement than ρc?
After all, both ρr and ρc contain identical diagonal elements. Therefore, both outcomes are still
potentially present. So what—if anything—was gained at the substantial price of introducing a
nonunitary process 1?

The Question of Preferred Basis: What Was Measured?

The key advantage of ρr over ρc is that its coefficients may be interpreted as classical probabilities.
The density matrix ρr can be used to describe the alternative states of a composite spin-detector
system that has classical correlations. Von Neumann’s process 1 serves a similar purpose to Bohr’s
“border” even though process 1 leaves all the alternatives in place. When the off-diagonal terms
are absent, one can nevertheless safely maintain that the apparatus, as well as the system, is each
separately in a definite but unknown state, and that the correlation between them still exists
in the preferred basis defined by the states appearing on the diagonal. By the same token, the
identities of two halves of a split coin placed in two sealed envelopes may be unknown but are
classically correlated. Holding one unopened envelope, we can be sure that the half it contains is
either “heads” or “tails” (and not some superposition of the two) and that the second envelope
contains the matching alternative.

By contrast, it is impossible to interpret ρc as representing such “classical ignorance.” In
particular, even the set of the alternative outcomes is not decided by ρc! This circumstance can be
illustrated in a dramatic fashion by choosing α = −β = 1/

√
2 so that the density matrix ρc is a

projection operator constructed from the correlated state

|Φc〉 = (| ↑〉|d↑ − | ↓〉|d↓〉)
√

2 . (8)

This state is invariant under the rotations of the basis. For instance, instead of the eigenstates of
| ↑〉 and | ↓〉 of σ̂z one can rewrite |Φc〉 in terms of the eigenstates of σ̂x:

|�〉 = (| ↑〉 + | ↓〉)
√

2 , (9a)

|⊗〉 = (| ↑〉 − | ↓〉)
√

2 . (9b)

This representation immediately yields

|Φc〉 = (|�〉|d�〉 − |⊗〉|d⊗〉)/
√

2 , (10)
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where
|d�〉 = |d↓〉 − d↑〉/

√
2 and |d⊗〉 = |d↑〉 + d↓〉

√
2 , (11)

are, as a consequence of the superposition principle, perfectly “legal” states in the Hilbert space
of the quantum detector. Therefore, the density matrix

ρc = |Φc〉〈Φc|

could have many (in fact, infinitely many) different states of the subsystems on the diagonal.
This freedom to choose a basis should not come as a surprise. Except for the notation, the

state vector |Φc〉 is the same as the wave function of a pair of maximally correlated (or entangled)
spin-1/2 systems in David Bohm’s version (1951) of the Einstein-Podolsky-Rosen (EPR) paradox
(Einstein et al. 1935). And the experiments that show that such nonseparable quantum correlations
violate Bell’s inequalities (Bell 1964) are demonstrating the following key point: The states of the
two spins in a system described by |Φc〉 are not just unknown, but rather they cannot exist before
the “real” measurement (Aspect et al. 1981, 1982). We conclude that when a detector is quantum,
a superposition of records exists and is a record of a superposition of outcomes—a very nonclassical
state of affairs.

Missing Information and Decoherence

Unitary evolution condemns every closed quantum system to “purity.” Yet, if the outcomes of a
measurement are to become independent events, with consequences that can be explored separately,
a way must be found to dispose of the excess information. In the previous sections, quantum
correlation was analyzed from the point of view of its role in acquiring information. Here, I shall
discuss the flip side of the story: Quantum correlations can also disperse information throughout
the degrees of freedom that are, in effect, inaccessible to the observer. Interaction with the degrees
of freedom external to the system—which we shall summarily refer to as the environment—offers
such a possibility.

Reduction of the state vector, ρc ⇒ ρr, decreases the information available to the observer
about the composite system SD. The information loss is needed if the outcomes are to become
classical and thereby available as initial conditions to predict the future. The effect of this loss is
to increase the entropy H = −Trρ ln ρ by an amount

∆H = H(ρr) −H(ρc) = (|α|2 ln |α|2 + |β|2 ln |β|2) . (12)

Entropy must increase because the initial state described by ρc was pure, H(ρc) = 0, and the
reduced state is mixed. Information gain—the objective of the measurement—is accomplished only
when the observer interacts and becomes correlated with the detector in the already precollapsed
state ρr.

To illustrate the process of the environment-induced decoherence, consider a system S, a
detector D, and an environment E . The environment is also a quantum system. Following the first
step of the measurement process—establishment of a correlation as shown in Equation (5)—the
environment similarly interacts and becomes correlated with the apparatus:

|Φc〉|E〉 = (α| ↑〉|d↑〉 + β| ↓〉|d↓〉)E0〉 ⇒ α| ↑〉|d↑〉|E↑〉 + β| ↓〉|d↓〉|E↓〉 = |Ψ〉 . (13)

The final state of the combined SDE “von Neumann chain” of correlated systems extends the
correlation beyond the SD pair. When the states of the environment Ei〉 corresponding to the states
|d↑〉 and |d↓〉 of the detector are orthogonal, 〈Ei|Ei′〉 = δii′ , the density matrix for the detector-
system combination is obtained by ignoring (tracing over) the information in the uncontrolled (and
unknown) degrees of freedom

ρDS = TrE |Ψ〉〈Ψ| = Σi〈Ei|Ψ〉〈Ψ|Ei′〉 = |α|2| ↑〉〈↑ ||d↑〉〈d↑| + |β|2| ↓〉〈↓ ||d↓〉〈d↓| = ρr . (14)

The resulting ρr is precisely the reduced density matrix that von Neumann called for. Now,
in contrast to the situation described by Equations (9)–(11), a superposition of the records of the
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detector states is no longer a record of a superposition of the state of the system. A preferred basis
of the detector, sometimes called the “pointer basis” for obvious reasons, has emerged. Moreover,
we have obtained it—or so it appears—without having to appeal to von Neumann’s nonunitary
process 1 or anything else beyond the ordinary, unitary Schrödinger evolution. The preferred basis
of the detector—or for that matter, of any open quantum system—is selected by the dynamics.

Not all aspects of this process are completely clear. It is, however, certain that the detector-
environment interaction Hamiltonian plays a decisive role. In particular, when the interaction with
the environment dominates, eigenspaces of any observable Λ that commutes with the interaction
Hamiltonian,

[Λ, Hint] = 0 . (15)

invariably end up on the diagonal of the reduced density matrix (Zurek 1981, 1982). This commu-
tation relation has a simple physical implication: It guarantees that the pointer observable Λ will
be a constant of motion, a conserved quantity under the evolution generated by the interaction
Hamiltonian. Thus, when a system is in an eigenstate of Λ, interaction with the environment will
leave it unperturbed.

In the real world, the spreading of quantum correlations is practically inevitable. For example,
when in the course of measuring the state of a spin-1/2 atom (see Figure 1b), a photon had scattered
from the atom while it was traveling along one of its two alternative routes, this interaction would
have resulted in a correlation with the environment and would have necessarily led to a loss of
quantum coherence. The density matrix of the SD pair would have lost its off-diagonal terms.
Moreover, given that it is impossible to catch up with the photon, such loss of coherence would
have been irreversible. As we shall see later, irreversibility could also arise from more familiar,
statistical causes: Environments are notorious for having large numbers of interacting degrees of
freedom, making extraction of lost information as difficult as reversing trajectories in the Boltzmann
gas.

Quantum Discord—A Measure of Quantumness

The contrast between the density matrices in Equations (6) and (7) is stark and obvious. In
particular, the entanglement between the system and the detector in ρc is obviously quantum—
classical systems cannot be entangled. The argument against the “ignorance” interpretation of ρc

still stands. Yet we would like to have a quantitative measure of how much is classical (or how
much is quantum) about the correlations of a state represented by a general density matrix. Such
a measure of the quantumness of correlation was devised recently (Zurek 2000, Ollivier and Zurek
2002). It is known as quantum discord. Of the several closely related definitions of discord, we shall
select one that is easiest to explain. It is based on mutual information—an information-theoretic
measure of how much easier it is to describe the state of a pair of objects (S, D) jointly rather
than separately. One formula for mutual information I(S : D) is simply

I(S : D) = H(S) +H(D) −H(S,D) ,

where H(S) and H(D) are the entropies of S and D, respectively, and H(S,D) is the joint entropy
of the two. When S and D are not correlated (statistically independent),

H(S,D) = H(S) +H(D) ,

and I(S : D) = 0. By contrast, when there is a perfect classical correlation between them (for
example, two copies of the same book), H(S,D) = H(S) = H(D) = I(S : D). Perfect classical
correlation implies that, when we find out all about one of them, we also know everything about
the other, and the conditional entropy H(S|D) (a measure of the uncertainty about S after the
state of D is found out) disappears. Indeed, classically, the joint entropy H(S,D) can always be
decomposed into, say, H(D), which measures the information missing about D, and the conditional
entropy H(S|D). Information is still missing about S even after the state of D has been determined:
H(S,D) = H(D) +H(S|D). This expression for the joint entropy suggests an obvious rewrite of
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the preceding definition of mutual information into a classically identical form, namely,

J (S : D) = H(S) +H(D) − (H(D) +H(S|D)) .

Here, we have abstained from the obvious (and perfectly justified from the classical viewpoint)
cancellation in order to emphasize the central feature of quantumness: In quantum physics, the
state collapses into one of the eigenstates of the measured observable. Hence, a state of the object
is redefined by a measurement. Thus, the joint entropy can be defined in terms of the conditional
entropy only after the measurement used to access, say, D, has been specified. In that case,

H|dk〉 = (H(D) +H(S|D))|dk〉
.

This type of joint entropy expresses the ignorance about the pair (S,D) after the observable with
the eigenstates {|dk〉} has been measured on D. Of course, H|dk〉(S,D) is not the only way to define
the entropy of the pair. One can also compute a basis-independent joint entropy H(S,D), the von
Neumann entropy of the pair. Since these two definitions of joint entropy do not coincide in the
quantum case, we can define a basis-dependent quantum discord

δ|dk〉(S|D) = I −J = (H(D) +H(S|D))|dk〉
+ H(S,D)

as the measure of the extent by which the underlying density matrix describing S and D is per-
turbed by a measurement of the observable with the eigenstates {|dk〉}. States of classical objects—
or classical correlations—are “objective”: They exist independent of measurements. Hence, when
there is a basis {|d̂k〉} such that the minimum discord evaluated for this basis disappears,

δ̂(S|D) = min|dk〉{H(S|D) − (H(D) +H(S|D))|dk〉} = 0 ,

the correlation can be regarded as effectively classical (or more precisely, as “classically accessible
through D”). One can then show that there is a set of probabilities associated with the basis {|dk〉}
that can be treated as classical. It is straightforward to see that, when S and D are entangled (for

example, ρc = |φc〉〈φc|), then δ̂ > 0 in all bases. By contrast, if we consider ρr, discord disappears
in the basis {|d↑〉, |d↓)〉} so that the underlying correlation is effectively classical.

It is important to emphasize that quantum discord is not just another measure of entangle-
ment but a genuine measure of the quantumness of correlations. In situations involving measure-
ments and decoherence, quantumness disappears for the preferred set of states that are effectively
classical and thus serves as an indicator of the pointer basis, which as we shall see, emerges as a
result of decoherence and einselection.

Decoherence: How Long Does It Take?

∆x

χ+

δ

χ–

Figure 2: A “Schrödinger Cat” State or a Coherent Superposition. This cat state ϕ(x), the coherent
superposition of two Gaussian wavepackets of Equation (18), could describe a particle in a super-
position of locations inside a Stern-Gerlach apparatus (see Figure 1) or the state that develops in
the course of a double-slit experiment. The phase between the two components has been chosen to
be zero.

A tractable model of the environment is afforded by a collection of harmonic oscillators
(Feynman and Vernon 1963, Dekker 1981, Caldeira and Leggett 1983a, 1983b, 1985, Joos and Zeh
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1985, Hu et al. 1992) or, equivalently, by a quantum field (Unruh and Zurek 1989). If a particle is
present, excitations of the field will scatter off the particle. The resulting “ripples” will constitute a
record of its position, shape, orientation, and so on, and most important, its instantaneous location
and hence its trajectory.

A boat traveling on a quiet lake or a stone that fell into water will leave such an imprint on
the water surface. Our eyesight relies on the perturbation left by the objects on the preexisting
state of the electromagnetic field. Hence, it is hardly surprising that an imprint is left whenever
two quantum systems interact, even when “nobody is looking,” and even when the lake is stormy
and full of preexisting waves, and the field is full of excitations—that is, when the environment
starts in equilibrium at some finite temperature. “Messy” initial states of the environment make
it difficult to decipher the record, but do not preclude its existence.

A specific example of decoherence—a particle at position x interacting with a scalar field φ
(which can be regarded as a collection of harmonic oscillators) through the Hamiltonian

Hint = εxdφ/dt (16)

where ε is the strength of the coupling, has been extensively studied by many, including the
investigators just referenced. The conclusion is easily formulated in the so-called “high-temperature
limit,” in which only thermal-excitation effects of the field φ are taken into account and the effect of
zero-point vacuum fluctuations is neglected. In this case, the density matrix ρ(x, x′) of the particle
in the position representation evolves according to the master equation

ρ̇ =

V on Neumann Equation
︷ ︸︸ ︷

− i

h̄
[H, ρ]

︸ ︷︷ ︸

ρ̇=−FORCE=ΛV

−

Relaxation
︷ ︸︸ ︷

γ(x− x′)

(
∂

∂x
− ∂

∂x′

)

︸ ︷︷ ︸

ρ̇=−γp

−

Decoherence
︷ ︸︸ ︷

2mγkBT

h̄2
(x − x′)2ρ

︸ ︷︷ ︸

Classical Phase Space

, (17)

where H is the particle’s Hamiltonian (although with the potential V (x) adjusted because of Hint),
γ is the relaxation rate, kB is the Boltzmann constant, and T is the temperature of the field. Equa-
tion (17) is obtained by first solving exactly the Schrödinger equation for a particle plus the field
and then tracing over the degrees of freedom of the field. I will not analyze Equation (17) in detail
but just point out that it naturally separates into three distinct terms, each of them responsible for
a different aspect of the effectively classical behavior. The first term—the von Neumann equation
(which can be derived from the Schrödinger equation)—generates reversible classical evolution of
the expectation value of any observable that has a classical counterpart regardless of the form of
ρ (Ehrenfest’s theorem). The second term causes dissipation. The relaxation rate γ = η/2m is
proportional to the viscosity η = ε2/2 due to the interaction with the scalar field. That interaction
causes a decrease in the average momentum and loss of energy. The last term also has a classical
counterpart: It is responsible for fluctuations or random “kicks” that lead to Brownian motion. We
shall see this in more detail in the next section. For our purposes, the effect of the last term on
quantum superpositions is of greatest interest. I shall show that it destroys quantum coherence,
eliminating off-diagonal terms responsible for quantum correlations between spatially separated
pieces of the wavepacket. It is therefore responsible for the classical structure of the phase space,
as it converts superpositions into mixtures of localized wave packets which, in the classical limit,
turn into the familiar points in phase space. This effect is best illustrated by an example. Consider
the “cat” state shown in Figure 2, where the wave function of a particle is given by a coherent
superposition of two Gaussians: ϕ(x) = (χ+(x) + χ−(x))/2

1

2 and the Gaussians are

χ±(x) = 〈x|±〉 exp

[

−
(
x± ∆x

2

)2

4δ2

]

. (18)

For the case of wide separation (∆x >> δ), the corresponding density matrix ρ(x, x′) =
ϕ(x)ϕ∗(x′) has four peaks: Two on the diagonal defined by x = x′, and two off the diagonal for
which x and x′ are very different (see Figure 3). Quantum coherence is due to the off-diagonal
peaks. As those peaks disappear, position emerges as an approximate preferred basis.
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Figure 3: Evolution of the Density Matrix for the Schrödinger Cat State in Figure 2. (a)This plot
shows the density matrix for the cat state in Figure 2 in the position representation ρ(x, x′) =
ϕ(x)ϕ∗(x). The peaks near the diagonal (green) correspond to the two possible locations of the
particle. The peaks away from the diagonal (red) are due to quantum coherence. Their existence and
size demonstrate that the particle is not in either of the two approximate locations but in a coherent
superposition of them. (b) Environment-induced decoherence causes decay of the off-diagonal terms
of ρ(x, x′). Here, the density matrix in (a) has partially decohered. Further decoherence would result
in a density matrix with diagonal peaks only. It can then be regarded as a classical probability
distribution with an equal probability of finding the particle in either of the locations corresponding
to the Gaussian wave packets.

The last term of Equation (17), which is proportional to (x − x′)2, has little effect on the
diagonal peaks. By contrast, it has a large effect on the off-diagonal peaks for which (x − x′)2 is
approximately the square of the separation (∆x)2. In particular, it causes the off-diagonal peaks
to decay at the rate d

dt (ρ
±) ∼ 2γmkBT/h̄

2(∆x)2ρ± = τ−1
D ρ+. It follows that quantum coherence

will disappear on a decoherence time scale (Zurek 1984);

τD ∼= γ−1

(
λdB
∆x

)2

= τR

(
h̄

∆x
√

2mkBT

)2

. (19)

where λdB = h̄/(2mkBT )−
1

2 is the thermal de Broglie wavelength. For macroscopic objects, the
decoherence time τD is typically much less than the relaxation time τR = γ−1. For a system at
temperature T = 300 kelvins with mass m = 1 gram and separation ∆x = 1 centimeter, the ratio
of the two time scales is τD/τR ∼ 10−40! Thus, even if the relaxation rate were of the order of the
age of the Universe, ∼ 1017 seconds, quantum coherence would be destroyed in τD ∼ 10−23 second.

For microscopic systems and, occasionally, even for very macroscopic ones, the decoherence
times are relatively long. For an electron (me = 10−27grams), τD can be much larger than the
other relevant time scales on atomic and larger energy and distance scales. For a massive Weber
bar, tiny ∆x(∼ 10−17centimeter) and cryogenic temperatures suppress decoherence. Nevertheless,
the macroscopic nature of the object is certainly crucial in facilitating the transition from quantum
to classical.

Experiments on Decoherence

A great deal of work on master equations and their derivations in different situations has been
conducted since 1991, but in effect, most of the results described above stand. A summary can be
found in Paz and Zurek (2001) and a discussion of the caveats to the simple conclusions regarding
decoherence rates appears in Anglin et al. (1997).

Perhaps the most important development in the study of decoherence is on the experimental
front. In the past decade, several experiments probing decoherence in various systems have been
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carried out. In particular, Michel Brune, Serge Haroche, Jean-Michel Raimond, and their colleagues
at École Normale Supérieure in Paris (Brune et al. 1996, Haroche 1998) have performed a series of
microwave cavity experiments in which they manipulate electromagnetic fields into a Schrödinger-
cat-like superposition using rubidium atoms. They probe the ensuing loss of quantum coherence.
These experiments have confirmed the basic tenets of decoherence theory. Since then, the French
scientists have applied the same techniques to implement various quantum information-processing
ventures. They are in the process of upgrading their equipment in order to produce “bigger and
better” Schrödinger cats and to study their decoherence.

A little later, Wineland, Monroe, and coworkers (Turchette et al. 2000) used ion traps (set up
to implement a fragment of one of the quantum computer designs) to study the decoherence of ions
due to radiation. Again, theory was confirmed, further advancing the status of decoherence as both a
key ingredient of the explanation of the emergent classicality and a threat to quantum computation.
In addition to these developments, which test various aspects of decoherence induced by a real or
simulated “large environment,” Pritchard and his coworkers at the Massachusetts Institute of
Technology have carried out a beautiful sequence of experiments by using atomic interferometry in
order to investigate the role of information transfer between atoms and photons (see Kokorowski et
al. 2001 and other references therein). Finally, “analogue experiments” simulating the behavior of
the Schrödinger equation in optics (Cheng and Raymer 1999) have explored some of the otherwise
difficult-to-access corners of the parameter space.

In addition to these essentially mesoscopic Schrödinger cat decoherence experiments, designs
of much more substantial “cats” (for example, mirrors in superpositions of quantum states) are
being investigated in several laboratories.

Classical Limit of Quantum Dynamic

The Schrödinger equation was deduced from classical mechanics in the Hamilton-Jacobi form.
Thus, it is no surprise that it yields classical equations of motion when h̄ can be regarded as
small. This fact, along with Ehrenfest’s theorem, Bohr’s correspondence principle, and the kinship
of quantum commutators with the classical Poisson brackets, is part of the standard lore found
in textbooks. However, establishing the quantum-classical correspondence involves the states as
well as the equations of motion. Quantum mechanics is formulated in Hilbert space, which can
accommodate localized wavepackets with sensible classical limits as well as the most bizarre and
quantum superpositions. By contrast, classical dynamics happens in phase space. To facilitate the
study of the transition from quantum to classical behavior, it is convenient to employ the Wigner
transform of a wave function ψ(x):

W (x, p) =
1

2πh̄

∫ ∞

−∞

eipy/h̄ψ∗
(

x+
y

2

)

ψ
(

x− y

2

)

dy , (20)

which expresses quantum states as functions of position and momentum.
The Wigner distribution W (x, p) is real, but it can be negative. Hence, it cannot be regarded

as a probability distribution. Nevertheless, when integrated over one of the two variables, it yields
the probability distribution for the other (for example,

∫
W (x, p)dp = |ψ(x)|2). For a minimum

uncertainty wavepacket, ψ(x) = π− 1

4 δ−
1

2 exp{−(x − x0)
2/2δ2 + ip0x/h̄}, the Wigner distribution

is a Gaussian in both x and p:

W (x, p) =
1

πh̄
exp

{

− (x− x0)
2

δ2
− (p− p0)

2δ2

h̄2

}

. (21)

It describes a system that is localized in both x and p. Nothing else that Hilbert space has to
offer is closer to approximating a point in classical phase space. The Wigner distribution is easily
generalized to the case of a general density matrix ρ(x, x′):

W (x, p) =
1

2πh̄

∫ ∞

−∞

eipy/h̄ρ
(

x− y

2
, x+

y

2

)

dy , (22)
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where ρ(x, x′) is, for example, the reduced density matrix of the particle discussed before.
The phase-space nature of the Wigner transform suggests a strategy for exhibiting classical

behavior: Whenever W (x, p) represents a mixture of localized wavepackets—as in Equation (21)—
it can be regarded as a classical probability distribution in the phase space. However, when the
underlying state is truly quantum, as is the superposition in Figure 2, the corresponding Wigner
distribution function will have alternating sign—see Figure 4(a). This property alone will make it
impossible to regard the function as a probability distribution in phase space. The Wigner function
in Figure 4(a) is

W (x, p) ∼ (W+ +W−)

2
+

1

πh̄
exp

{

−p
2δ2

h̄2
− x2

δ2

}

· cos

(
∆x

h̄
p

)

, (23)

where the Gaussians W+ and W− are Wigner transforms of the Gaussian wavepacket χ+ and χ−.
If the underlying state had been a mixture of χ+ and χ− rather than a superposition, the Wigner
function would have been described by the same two Gaussians W+ and W−, but the oscillating
term would have been absent.

The equation of motion for W (x, p) of a particle coupled to an environment can be obtained
from Equation (17) for ρ(x, x′):

∂W

∂t
= − p

m

∂

∂x
W +

∂V

∂x

∂

∂p
W

︸ ︷︷ ︸

LiouvilleEquation

+ 2γ
∂

∂p
pW

︸ ︷︷ ︸

Friction

+ D
∂2W

∂p2

︸ ︷︷ ︸

Decoherence

, (24)

where V is the renormalized potential and D = 2mγBT = ηkBT . The three terms of this equation
correspond to the three terms of Equation (17).

The first term is easily identified as a classical Poisson bracket {H,W}. That is, when w(x, p)
is a familiar classical probability density in phase space, then it evolves according to:

∂w

∂t
= −∂w

∂x

∂H

∂p
+
∂w

∂p

∂H

∂x
= {H,w} = Lw (25)

where L stands for the Liouville operator. Thus, classical dynamics in its Liouville form follows
from quantum dynamics at least for the harmonic oscillator case, which is described rigorously by
Equations (17) and (24). (For more general V (x), the Poisson bracket would have to be supple-
mented by quantum corrections of order h̄.) The second term of Equation (24) represents friction.
The last term results in the diffusion of W (x, p) in momentum at the rate given by D.

Classical equations of motion are a necessary but insufficient ingredient of the classical limit:
We must also obtain the correct structure of the classical phase space by barring all but the
probability distributions of well-localized wavepackets. The last term in Equation (24) has precisely
this effect on nonclassical W (x, p). For example, the Wigner function for the superposition of
spatially localized wave packets—Figure 4(a)—has a sinusoidal modulation in the momentum
coordinate produced by the oscillating term cos((∆x/h̄)p). This term, however, is an eigenfunction
of the diffusion operator ∂2/∂p2 in the last term of Equation (24). As a result, the modulation is
washed out by diffusion at a rate

τ−1
D = −Ẇ

W
=

(

D ∂2

∂p2W
)

W
=

2mγkBT (∆x)2

h̄2
(26)

Negative valleys of W (x, p) fill in on a time scale of order τD, and the distribution retains just
two peaks, which now correspond to two classical alternatives-see Figures 4(a) to 4(e). The Wigner
function for a superposition of momenta, shown in Figure 4(a′), also decoheres as the dynamics
causes the resulting difference in velocities to damp out the oscillations in position and again yield
two classical alternatives—see Figures 4(b′) to 4(e′).

The ratio of the decoherence and relaxation time scales depends on h̄2/m—see Equation
(19). Therefore, when m is large and h̄ small, τD can be nearly zero—decoherence can be nearly
instantaneous—while, at the same time, the motion of small patches (which correspond to the
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Figure 4: Wigner Distributions and Their Decoherence for Coherent Superpositions. (a) The Wigner
distribution W (x, p) is plotted as a function of x and p for the cat state of Figure 2. Note the
two separate positive peaks as well as the oscillating interference term in between them. This
distribution cannot be regarded as a classical probability distribution in phase space because it has
negative contributions. (b–e) Decoherence produces diffusion in the direction of the momentum.
As a result, the negative and positive ripples of the interference term in (x, p) diffuse into each
other and cancel out. This process is almost instantaneous for open macroscopic systems. In the
appropriate limit, the Wigner function has a classical structure in phase space and evolves in
accord with the equations of classical dynamics. (a′–e′) The analogous initial Wigner distribution
and its evolution for a superposition of momenta are shown. The interference terms disappear
more slowly on a time scale dictated by the dynamics of the system: Decoherence is caused by the
environment coupling to (that is, monitoring) the position of the system—see Equation(16). So,
for a superposition of momenta, it will start only after different velocities move the two peaks into
different locations.

probability distribution in classical phase space) in the smooth potential becomes reversible. This
idealization is responsible for our confidence in classical mechanics, and, more generally, for many
aspects of our belief in classical reality.

The discussion above demonstrates that decoherence and the transition from quantum to
classical (usually regarded as esoteric) is an inevitable consequence of the immersion of a system in
an environment. True, our considerations were based on a fairly specific model—a particle in a heat
bath of harmonic oscillators. However, this is often a reasonable approximate model for many more
complicated systems. Moreover, our key conclusions—such as the relation between the decoherence
and relaxation time scales in Equation (19)—do not depend on any specific features of the model.
Thus, one can hope that the viscosity and the resulting relaxation always imply decoherence and
that the transition from quantum to classical can be always expected to take place on a time scale
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of the order of the above estimates.

The Predictability Sieve

Since 1991, the understanding of the emergence of the preferred pointer states during the process
of decoherence has advanced a great deal. Perhaps the most important advance to date is the
predictability sieve (Zurek 1993, Zurek et al. 1993), a more general definition of pointer states
that can be used even when the interaction with the environment does not dominate over the
self-Hamiltonian of the system. The predictability sieve sifts through the Hilbert space of a system
interacting with its environment and selects states that are most predictable. Motivation for the
predictability sieve comes from the observation that classical states exist or evolve predictably.
Therefore, selecting quantum states that retain predictability in spite of the coupling to the en-
vironment is the obvious strategy in search of classicality. To implement the predictability sieve,
we imagine a (continuously infinite) list of all the pure states {|ψ〉} in the Hilbert space of the
system in question. Each of them would evolve, after a time t, into a density matrix ρ|ψ〉(t). If the
system were isolated, all the density matrices would have the form ρ|ψ〉(t) = |ψ(t)〉〈ψ(t)| of pro-
jection operators, where |ψ(t)〉 is the appropriate solution of the Schrödinger equation. But when
the system is coupled to the environment (that is, the system is “open”), ρ|ψ〉(t) is truly mixed
and has a nonzero von Neumann entropy. Thus, one can compute H(ρ|ψ〉(t)) = −Trρ|ψ〉 log ρ|ψ〉,
thereby defining a functional on the Hilbert space HS of the system, |ψ〉 → H(|ψ〉, t). An obvious
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Figure A: The Predictability Sieve for the Underdamped Harmonic Oscillator. One measure of
predictability is the so-called purity (Trρ2), which is plotted as a function of time for mixtures of
minimum uncertainty wavepackets in an underdamped harmonic oscillator with γ/ω = 10−4. The
wavepackets start with different squeeze parameters s. (Trρ2) serves as a measure of the purity of
the reduced density matrix ρ. The predictability sieve favors coherent states (s = 1), which have
the shape of a ground state, that is, the same spread in position and momentum when measured
in units natural for the harmonic oscillator. Because they are the most predictable (more than the
energy eigenstates), they are expected to play the crucial role of the pointer basis in the transition
from quantum to classical.

way to look for predictable, effectively classical states is to seek a subset of all {|ψ〉} that minimize
H(|ψ〉, t) after a certain, sufficiently long time t. When such preferred pointer states exist, are well
defined (that is, the minimum of the entropy H(|ψ〉, t) differs significantly for pointer states from
the average value), and are reasonably stable (that is, after the initial decoherence time, the set of
preferred states is reasonably insensitive to the precise value of t), one can consider them as good
candidates for the classical domain. Figure A illustrates an implementation of the predictability
sieve strategy using a different, simpler measure of predictability—purity (Trρ2)—rather than the
von Neumann entropy, which is much more difficult to compute.
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Quantum Chaos and Phase Space Aspects of Quantum - Classical Correspondence

Classical mechanics “happens” in phase space. It is therefore critically important to show that
quantum theory can—in the presence of decoherence—reproduce the basic structure of classical
phase space and that it can emulate classical dynamics. The argument put forward in my original
paper (1991) has since been amply supported by several related developments.

The crucial idealization that plays a key role in classical physics is a point. Because of the
Heisenberg’s indeterminacy principle ∆x∆p ≥ h̄/2. Hence, quantum theory does not admit states
with simultaneously vanishing ∆x and ∆p. However, as the study of the predictability sieve has
demonstrated, in many situations relevant to the classical limit of quantum dynamics one can
expect decoherence to select pointer states that are localized in both ∆x and ∆p. That is, approx-
imate minimum uncertainty wavepackets are a quantum version of points. They appear naturally
in the underdamped harmonic oscillator coupled weakly to the environment (Zurek, 1993, Zurek
et al. 1993, Gallis 1996). These results are also relevant to the transition from quantum to classical
in the context of field theory with the added twist that the kinds of states selected will typically
differ for bosonic and fermionic fields (Anglin and Zurek 1996) because bosons and fermions tend
to couple differently to their environments. Finally, under suitable circumstances, einselection can
even single out energy eigenstates of the self-Hamiltonian of the system, thus justifying in part the
perception of “quantum jumps” (Paz and Zurek 1999).

An intriguing arena for the discussion of quantum - classical correspondence is quantum
chaos. To begin with, classical and quantum evolutions from the same initial conditions of a system
lead to very different phase space “portraits.” The quantum phase space portrait will depend on
the particular representation used, but there are good reasons to favor the Wigner distribution.
Studies that use the Wigner distribution indicate that, at the moment when any quantum - classical
correspondence is lost in chaotic dynamics, even the averages computed using properties of the
classical and quantum states begin to differ (Karkuszewski et al. 2002).

Decoherence appears to be very effective in restoring correspondence. This point, originally
demonstrated almost a decade ago (Zurek and Paz 1994, 1995) has since been amply corrobo-
rated by numerical evidence (Habib et al. 1998). Basically, decoherence eradicates the small-scale
interference accompanying the rapid development of large-scale coherence in quantum versions of
classically chaotic systems (refer to Figure B). This outcome was expected. In order for the quan-
tum to classical correspondence to hold, the coherence length `C of the quantum state must satisfy
the following inequality: `C = h̄/(2Dλ)

1

2 << χ, where λ is the Lyapunov exponent, D is the usual
coefficient describing the rate of decoherence, and χ is the scale on which the potential V (x) is
significantly nonlinear:

χ ∼=
√

V ′

V ′′′
.

When a quantum state is localized on scales small compared to χ (which is the import of the
inequality above), its phase space evolution is effectively classical, but because of chaos and deco-
herence, it becomes irreversible and unpredictable.

A surprising corollary of this line of argument is the realization (Zurek and Paz 1994) that
the dynamical second law—entropy production at the scale set by the dynamics of the system and
more or less independent of the strength of the coupling to the environment—is a natural and,
indeed, an inevitable consequence of decoherence. This point has been since confirmed in numerical
studies (Miller and Sarkar 1999, Pattanayak 1999, Monteoliva and Paz 2000).

Other surprising consequences of the study of Wigner functions in the quantum-chaotic con-
text is the realization that they develop phase space structure on the scale associated with the
sub-Planck action α = h̄2/A << h̄, where A is the classical action of the system, and that this
sub-Planck action is physically significant (Zurek 2001b). This can be seen in Figure B part (a),
where a small black square with the area of h̄ is clearly larger than the smallest “ripples” in the im-
age. This point was to some extent anticipated by the plots of the Wigner functions of Schrödinger
cats (see Figures 4a and 4(a′) in this article) a version of which appeared in the 1991 Physics Today
version of this paper—the interference term of the Wigner function has a sub-Planck structure.

A lot has happened in establishing phase space aspects of quantum - classical correspondence,
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Figure B: Decoherence in a Chaotic Driven Double-Well System. This numerical study (Habib et al.
1998) of a chaotic driven double-well system described by the HamiltonianH = p2/2m−Ax+Bx4+
Fx cos(ωt) with m = 1, A = 10, B = 0.5, F = 10, and ω = 6.07 illustrates the effectiveness of
decoherence in the transition from quantum to classical. These parameters result in a chaotic
classical system with a Lyapunov exponent λ ∼= 0.5. The three snapshots taken after 8 periods of
the driving force illustrate phase space distributions in (a) the quantum case, (b) the classical case,
and (c) the quantum case but with decoherence (D = 0.025). The initial condition was always the
same Gaussian, and in the quantum cases, the state was pure. Interference fringes are clearly visible
in (a), which bears only a vague resemblance to the classical distribution in (b). By contrast, (c)
shows that even modest decoherence helps restore the quantum-classical correspondence. In this
example the coherence length `C is not much smaller than the typical nonlinearity scale, so the
system is on the border between quantum and classical. Indeed, traces of quantum interference are
still visible in (c) as blue “troughs,” or regions where the Wigner function is still slightly negative.
The change in color from red to blue shown in the legends for (a) and (c) corresponds to a change
from positive peaks to negative troughs. In the ab initio classical case (b), there are no negative
troughs.

but a lot more remains to be done. (A more thorough summary of the past accomplishments and
remaining goals can be found in Zurek 2001b).

1 Quantum Theory of Classical Reality

Classical reality can be defined purely in terms of classical states obeying classical laws. In the past
few sections, we have seen how this reality emerges from the substrate of quantum physics: Open
quantum systems are forced into states described by localized wavepackets. They obey classical
equations of motion, although with damping terms and fluctuations that have a quantum origin.
What else is there to explain?

Controversies regarding the interpretation of quantum physics originate in the clash between
the predictions of the Schrödinger equation and our perceptions. I will therefore conclude this
paper by revisiting the source of the problem—our awareness of definite outcomes. If these mental
processes were essentially unphysical, there would be no hope of formulating and addressing the
ultimate question—why do we perceive just one of the quantum alternatives?—within the context
of physics. Indeed, one might be tempted to follow Eugene Wigner (1961) and give consciousness
the last word in collapsing the state vector. I shall assume the opposite. That is, I shall examine
the idea that the higher mental processes all correspond to well-defined, but, at present, poorly
understood information-processing functions that are being carried out by physical systems, our
brains.

Described in this manner, awareness becomes susceptible to physical analysis. In particular,
the process of decoherence we have described above is bound to affect the states of the brain: Rele-
vant observables of individual neurons, including chemical concentrations and electrical potentials,
are macroscopic. They obey classical, dissipative equations of motion. Thus, any quantum super-
position of the states of neurons will be destroyed far too quickly for us to become conscious of
the quantum “goings on”. Decoherence, or more to the point, environment-induced superselection,
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applies to our own “state of mind”.

One might still ask why the preferred basis of neurons becomes correlated with the classical
observables in the familiar universe. It would be, after all, so much easier to believe in quantum
physics if we could train our senses to perceive nonclassical superpositions. One obvious reason
is that the selection of the available interaction Hamiltonians is limited and constrains the choice
of detectable observables. There is, however, another reason for this focus on the classical that
must have played a decisive role: Our senses did not evolve for the purpose of verifying quantum
mechanics. Rather, they have developed in the process in which survival of the fittest played a
central role. There is no evolutionary reason for perception when nothing can be gained from
prediction. And, as the predictability sieve illustrates, only quantum states that are robust in spite
of decoherence, and hence, effectively classical, have predictable consequences. Indeed, classical
reality can be regarded as nearly synonymous with predictability.

There is little doubt that the process of decoherence sketched in this paper is an important
element of the big picture central to understanding the transition from quantum to classical.
Decoherence destroys superpositions. The environment induces, in effect, a superselection rule
that prevents certain superpositions from being observed. Only states that survive this process can
become classical.

There is even less doubt that this rough outline will be further extended. Much work needs
to be done both on technical issues (such as studying more realistic models that could lead to
additional experiments) and on problems that require new conceptual input (such as defining what
constitutes a “system” or answering the question of how an observer fits into the big picture).

Decoherence is of use within the framework of either of the two interpretations: It can supply
a definition of the branches in Everett’s Many Worlds Interpretation, but it can also delineate the
border that is so central to Bohr’s point of view. And if there is one lesson to be learned from what
we already know about such matters, it is that information and its transfer play a key role in the
quantum universe.

The natural sciences were built on a tacit assumption: Information about the universe can be
acquired without changing its state. The ideal of “hard science” was to be objective and provide a
description of reality. Information was regarded as unphysical, ethereal, a mere record of the tan-
gible, material universe, an inconsequential reflection, existing beyond and essentially decoupled
from the domain governed by the laws of physics. This view is no longer tenable (Wheeler 1991,
Landauer 1991). Quantum theory has put an end to this Laplacean dream about a mechanical
universe. Observers of quantum phenomena can no longer be just passive spectators. Quantum
laws make it impossible to gain information without changing the state of the measured object.
The dividing line between what is and what is known to be has been blurred forever. While abol-
ishing this boundary, quantum theory has simultaneously deprived the “conscious observer” of a
monopoly on acquiring and storing information: Any correlation is a registration, any quantum
state is a record of some other quantum state. When correlations are robust enough, or the record
is sufficiently indelible, familiar classical “objective reality” emerges from the quantum substrate.
Moreover, even a minute interaction with the environment, practically inevitable for any macro-
scopic object, will establish such a correlation: The environment will, in effect, measure the state
of the object, and this suffices to destroy quantum coherence. The resulting decoherence plays,
therefore, a vital role in facilitating the transition from quantum to classical.

The Existential Interpretation

The quantum theory of classical reality has developed significantly since 1991. These advances
are now collectively known as the existential interpretation (Zurek 2001a). The basic difference
between quantum and classical states is that the objective existence of the latter can be taken for
granted. That is, a system’s classical state can be simply “found out” by an observer originally
ignorant of any of its characteristics. By contrast, quantum states are hopelessly “malleable”—it is
impossible in principle for an observer to find out an unknown quantum state without perturbing
it. The only exception to this rule occurs when an observer knows beforehand that the unknown
state is one of the eigenstates of some definite observable. Then and only then can a nondemolition
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measurement (Caves et al. 1980) of that observable be devised so that another observer who knew
the original state would not notice any perturbations when making a confirmatory measurement.

If the unknown state cannot be found out—as is indeed the case for isolated quantum
systems—then one can make a persuasive case that such states are subjective, and that quan-
tum state vectors are merely records of the observer’s knowledge about the state of a fragment of
the Universe (Fuchs and Peres 2000). However, einselection is capable of converting such malleable
and “unreal” quantum states into solid elements of reality. Several ways to argue this point have
been developed since the early discussions (Zurek 1993, 1998, 2001a). In effect, all of them rely
on einselection, the emergence of the preferred set of pointer states. Thus, observers aware of the
structure of the Hamiltonians (which are “objective,” can be found out without “collateral dam-
age”, and in the real world, are known well enough in advance) can also divine the sets of preferred
pointer states (if they exist) and thus discover the preexisting state of the system.

One way to understand this environment—induced objective existence is to recognize that
observers—especially human observers—never measure anything directly. Instead, most of our data
about the Universe is acquired when information about the systems of interest is intercepted and
spread throughout the environment. The environment preferentially records the information about
the pointer states, and hence, only information about the pointer states is readily available. This
argument can be made more rigorous in simple models, whose redundancy can be more carefully
quantified (Zurek 2000, 2001a).

This is an area of ongoing research. Acquisition of information about the systems from frag-
ments of the environment leads to the so-called conditional quantum dynamics, a subject related
to quantum trajectories (Carmichael 1993). In particular one can show that the predictability sieve
also works in this setting (Dalvit et al. 2001).

The overarching open question of the interpretation of quantum physics—the “meaning of the
wave function”—appears to be in part answered by these recent developments. Two alternatives
are usually listed as the only conceivable answers. The possibility that the state vector is purely
epistemological (that is, solely a record of the observer’s knowledge) is often associated with the
Copenhagen Interpretation (Bohr 1928). The trouble with this view is that there is no unified
description of the Universe as a whole: The classical domain of the Universe is a necessary pre-
requisite, so both classical and quantum theory are necessary and the border between them is, at
best, ill-defined. The alternative is to regard the state vector as an ontological entity—as a solid
description of the state of the Universe akin to the classical states. But in this case (favored by
the supporters of Everett’s Many Worlds Interpretation), everything consistent with the universal
state vector needs to be regarded as equally “real.”

The view that seems to be emerging from the theory of decoherence is in some sense some-
where in between these two extremes. Quantum state vectors can be real, but only when the
superposition principle—a cornerstone of quantum behavior—is “turned off” by einselection. Yet
einselection is caused by the transfer of information about selected observables. Hence, the on-
tological features of the state vectors—objective existence of the einselected states—is acquired
through the epistemological “information transfer.”

Obviously, more remains to be done. Equally obviously, however, decoherence and einselection
are here to stay. They constrain the possible solutions after the quantum—classical transition in
a manner suggestive of a still more radical view of the ultimate interpretation of quantum theory
in which information seems destined to play a central role. Further speculative discussion of this
point is beyond the scope of the present paper, but it will be certainly brought to the fore by
(paradoxically) perhaps the most promising applications of quantum physics to information pro-
cessing. Indeed, quantum computing inevitably poses questions that probe the very core of the
distinction between quantum and classical. This development is an example of the unpredictability
and serendipity of the process of scientific discovery: Questions originally asked for the most im-
practical of reasons—questions about the EPR paradox, the quantum-to-classical transition, the
role of information, and the interpretation of the quantum state vector—have become relevant to
practical applications such as quantum cryptography and quantum computation.
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